Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Vortex flow properties in simulations of solar plage region: Evidence for their role in chromospheric heating

Yadav, N., Cameron, R. H., & Solanki, S. K. (2021). Vortex flow properties in simulations of solar plage region: Evidence for their role in chromospheric heating. Astronomy and Astrophysics, 645: A3. doi:10.1051/0004-6361/202038965.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Yadav, Nitin1, Autor           
Cameron, Robert H.2, Autor           
Solanki, Sami K.1, Autor           
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              
2Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832287              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Sun: faculae, plages / Sun: chromosphere / methods: numerical / methods: statistical
 Zusammenfassung: Context. Vortex flows exist across a broad range of spatial and temporal scales in the solar atmosphere. Small-scale vortices are thought to play an important role in energy transport in the solar atmosphere. However, their physical properties remain poorly understood due to the limited spatial resolution of the observations.

Aims. We explore and analyze the physical properties of small-scale vortices inside magnetic flux tubes using numerical simulations, and investigate whether they contribute to heating the chromosphere in a plage region.

Methods. Using the three-dimensional radiative magnetohydrodynamic simulation code MURaM, we perform numerical simulations of a unipolar solar plage region. To detect and isolate vortices we use the swirling strength criterion and select the locations where the fluid is rotating with an angular velocity greater than a certain threshold. We concentrate on small-scale vortices as they are the strongest and carry most of the energy. We explore the spatial profiles of physical quantities such as density and horizontal velocity inside these vortices. Moreover, to learn their general characteristics, a statistical investigation is performed.

Results. Magnetic flux tubes have a complex filamentary substructure harboring an abundance of small-scale vortices. At the interfaces between vortices strong current sheets are formed that may dissipate and heat the solar chromosphere. Statistically, vortices have higher densities and higher temperatures than the average values at the same geometrical height in the chromosphere.

Conclusions. We conclude that small-scale vortices are ubiquitous in solar plage regions; they are denser and hotter structures that contribute to chromospheric heating, possibly by dissipation of the current sheets formed at their interfaces.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1051/0004-6361/202038965
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Astronomy and Astrophysics
  Andere : Astron. Astrophys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Les Ulis Cedex A France : EDP Sciences
Seiten: - Band / Heft: 645 Artikelnummer: A3 Start- / Endseite: - Identifikator: ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1