English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A dynamo amplifying the magnetic field of a Milky-Way-like galaxy

Ntormousi, E., Tassis, K., Sordo, F. D., Fragkoudi, F., & Pakmor, R. (2020). A dynamo amplifying the magnetic field of a Milky-Way-like galaxy. Astronomy and Astrophysics, 641: A165. doi:10.1051/0004-6361/202037835.

Item is

Files

show Files
hide Files
:
A dynamo amplifying the magnetic field of a Milky-Way-like galaxy.pdf (Any fulltext), 7MB
 
File Permalink:
-
Name:
A dynamo amplifying the magnetic field of a Milky-Way-like galaxy.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ntormousi, Evangelia, Author
Tassis, Konstantinos, Author
Sordo, Fabio Del, Author
Fragkoudi, Francesca1, Author           
Pakmor, Rüdiger2, Author           
Affiliations:
1Computational Structure Formation, MPI for Astrophysics, Max Planck Society, ou_2205642              
2Stellar Astrophysics, MPI for Astrophysics, Max Planck Society, ou_159882              

Content

show
hide
Free keywords: -
 Abstract: Context. The magnetic fields of spiral galaxies are so strong that they cannot qualify as primordial. Their typical values are over one billion times higher than any value predicted for the early Universe. Explaining this immense growth and incorporating it in galaxy evolution theories is one of the long-standing challenges in astrophysics.

Aims. So far, the most successful theory for the sustained growth of the galactic magnetic field is the alpha-omega dynamo. This theory predicts a characteristic dipolar or quadrupolar morphology for the galactic magnetic field, which has been observed in external galaxies. So far, however, there has been no direct demonstration of a mean-field dynamo operating in direct, multi-physics simulations of spiral galaxies. We carry out such a demonstration in this work.

Methods. We employed numerical models of isolated, star-forming spiral galaxies that include a magnetized gaseous disk, a dark matter halo, stars, and stellar feedback. Naturally, the resulting magnetic field has a complex morphology that includes a strong random component. Using a smoothing of the magnetic field on small scales, we were able to separate the mean from the turbulent component and analyze them individually.

Results. We find that a mean-field dynamo naturally occurs as a result of the dynamical evolution of the galaxy and amplifies the magnetic field by an order of magnitude over half a Gyr. Despite the highly dynamical nature of these models, the morphology of the mean component of the field is identical to analytical predictions.

Conclusions. This result underlines the importance of the mean-field dynamo in galactic evolution. Moreover, by demonstrating the natural growth of the magnetic field in a complex galactic environment, it brings us a step closer to understanding the cosmic origin of magnetic fields.

Details

show
hide
Language(s): eng - English
 Dates: 2020-09-25
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1051/0004-6361/202037835
Other: LOCALID: 3278302
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: France : EDP Sciences S A
Pages: - Volume / Issue: 641 Sequence Number: A165 Start / End Page: - Identifier: ISSN: 1432-0746
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1