ausblenden:
Schlagwörter:
Anion transport; Erythrocyte; Arginine-specific reagent; Phenylglyoxal
Kinetics
Zusammenfassung:
Phenylglyoxal is found to be a potent inhibitor of sulfate equilibrium exchange across the red blood cell membrane at both pH 7.4 and 8.0. The inactivation exhibits pseudo-first-order kinetics with a reaction order close to one at both pH 7.4 and 8. The rate constant of inactivation at 37°C was found to be 0.12 min−1 at pH 7.4 and 0.19 min−1 at pH 8.0. Saturation kinetics are observed if the pseudo-first order rate constant of inhibition is measured as a function of phenylglyoxal concentration. Sulfate ions as well as chloride ions markedly decrease the rate of inactivation by phenylglyoxal at pH 7.4, suggesting that the modification occurs at or near to the binding site for chloride and sulfate. The decrease of the rate of inactivation produced at pH 8.0 by chloride ions is much higher than that produced by sulfate ions. Kinetic analysis of the protection experiments showed that the loaded transport site is unable to react with phenylglyoxal. From the data it is concluded that the modified amino acid(s) residues, presumably arginine, is (are) important for the binding of the substrate anion.