Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  i3DMM: Deep Implicit 3D Morphable Model of Human Heads

Yenamandra, T., Tewari, A., Bernard, F., Seidel, H.-P., Elgharib, M., Cremers, D., et al. (2020). i3DMM: Deep Implicit 3D Morphable Model of Human Heads. Retrieved from https://arxiv.org/abs/2011.14143.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:2011.14143.pdf (Preprint), 30MB
Name:
arXiv:2011.14143.pdf
Beschreibung:
File downloaded from arXiv at 2021-01-19 13:09
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Yenamandra, Tarun1, Autor
Tewari, Ayush2, Autor           
Bernard, Florian1, Autor           
Seidel, Hans-Peter2, Autor                 
Elgharib, Mohamed2, Autor           
Cremers, Daniel1, Autor
Theobalt, Christian2, Autor                 
Affiliations:
1External Organizations, ou_persistent22              
2Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Computer Vision and Pattern Recognition, cs.CV,Computer Science, Graphics, cs.GR,Computer Science, Learning, cs.LG
 Zusammenfassung: We present the first deep implicit 3D morphable model (i3DMM) of full heads.
Unlike earlier morphable face models it not only captures identity-specific
geometry, texture, and expressions of the frontal face, but also models the
entire head, including hair. We collect a new dataset consisting of 64 people
with different expressions and hairstyles to train i3DMM. Our approach has the
following favorable properties: (i) It is the first full head morphable model
that includes hair. (ii) In contrast to mesh-based models it can be trained on
merely rigidly aligned scans, without requiring difficult non-rigid
registration. (iii) We design a novel architecture to decouple the shape model
into an implicit reference shape and a deformation of this reference shape.
With that, dense correspondences between shapes can be learned implicitly. (iv)
This architecture allows us to semantically disentangle the geometry and color
components, as color is learned in the reference space. Geometry is further
disentangled as identity, expressions, and hairstyle, while color is
disentangled as identity and hairstyle components. We show the merits of i3DMM
using ablation studies, comparisons to state-of-the-art models, and
applications such as semantic head editing and texture transfer. We will make
our model publicly available.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-11-282020
 Publikationsstatus: Online veröffentlicht
 Seiten: 18 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2011.14143
BibTex Citekey: Yenamandra_arXiv2011.14143
URI: https://arxiv.org/abs/2011.14143
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: