Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Spatiotemporal deformable prototypes for motion anomaly detection

Bensch, R., Scherf, N., Huisken, J., Brox, T., & Ronneberger, O. (2017). Spatiotemporal deformable prototypes for motion anomaly detection. International Journal of Computer Vision, 122, 502-523. doi:10.1007/s11263-016-0934-1.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Bensch, Robert1, Autor
Scherf, Nico1, Autor           
Huisken, Jan1, Autor
Brox, Thomas1, Autor
Ronneberger, Olaf1, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Anomaly detection; Motion patterns; Point trajectories; Elastic registration
 Zusammenfassung: This paper presents an approach for motion-based anomaly detection, where a prototype pattern is detected and elastically registered against a test sample to detect anomalies in the test sample. The prototype model is learned from multiple sequences to define accepted variations. “Supertrajectories” based on hierarchical clustering of dense point trajectories serve as an efficient and robust representation of motion patterns. An efficient hashing approach provides transformation hypotheses that are refined by a spatiotemporal elastic registration. We propose a new method for elastic registration of 3D+time trajectory patterns that induces spatial elasticity from trajectory affinities. The method is evaluated on a new motion anomaly dataset of juggling patterns and performs well in detecting subtle anomalies. Moreover, we demonstrate the applicability to biological motion patterns.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2016-01-152016-07-062016-07-192017-05
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1007/s11263-016-0934-1
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: International Journal of Computer Vision
  Andere : Int. J. Comput. Vis.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Hingham, Mass. : Kluwer Academic Publishers
Seiten: - Band / Heft: 122 Artikelnummer: - Start- / Endseite: 502 - 523 Identifikator: ISSN: 0920-5691
CoNE: https://pure.mpg.de/cone/journals/resource/954925564668