Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes

Eberle, D., Fodelianaki, G., Kurth, T., Jagielska, A., Möllmert, S., Ulbricht, E., et al. (2020). Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes. Brain Multiphysics, 1: 100019. doi:10.1016/j.brain.2020.100019.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1-s2.0-S266652202030006X-main.pdf (Verlagsversion), 3MB
Name:
1-s2.0-S266652202030006X-main.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Eberle, Dominic1, Autor
Fodelianaki, Georgia1, Autor
Kurth, Thomas1, Autor
Jagielska, Anna1, Autor
Möllmert, Stephanie2, 3, 4, Autor           
Ulbricht, Elke1, Autor
Wagner, Katrin1, Autor
Taubenberger, Anna V.1, Autor
Träber, Nicolas1, Autor
Escolano, Joan-Carles2, 4, Autor           
Van Vliet, Krystyn J.1, Autor
Guck, Jochen2, 3, 4, 5, Autor           
Affiliations:
1external, ou_persistent22              
2Guck Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164416              
3Guck Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society, ou_3596668              
4Technische Universität Dresden, ou_persistent22              
5Friedrich-Alexander Universität Erlangen-Nürnberg, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Multiple sclerosis, Tissue stiffness, Atomic force microscopy, Demyelination, Cuprizone, Shiverer
 Zusammenfassung: Changes in axonal myelination are an important hallmark of aging and a number of neurological diseases. Demyelinated axons are impaired in their function and degenerate over time. Oligodendrocytes, the cells responsible for myelination of axons, are sensitive to mechanical properties of their environment. Growing evidence indicates that mechanical properties of demyelinating lesions are different from the healthy state and thus have the potential to affect myelinating potential of oligodendrocytes. We performed a high-resolution spatial mapping of the mechanical heterogeneity of demyelinating lesions using atomic force microscope-enabled indentation. Our results indicate that the stiffness of specific regions of mouse brain tissue is influenced by age and degree of myelination. Here we specifically demonstrate that acquired acute but not genetic demyelination leads to decreased tissue stiffness, which could influence the remyelination potential of oligodendrocytes. We also demonstrate that specific brain regions have unique ranges of stiffness in white and grey matter. Our ex vivo findings may help the design of future in vitro models to mimic the mechanical environment of the brain in healthy and diseased states. The mechanical properties of demyelinating lesions reported here may facilitate novel approaches in treating demyelinating diseases such as multiple sclerosis.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-11
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.brain.2020.100019
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Brain Multiphysics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Elsevier
Seiten: - Band / Heft: 1 Artikelnummer: 100019 Start- / Endseite: - Identifikator: -