English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts

Heinz, A., & Passow, H. (1980). Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. Journal of Membrane Biology, 57, 119-131. doi:10.1007/BF01868998.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Heinz, Agnes1, Author           
Passow, Hermann1, Author           
Affiliations:
1Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society, ou_3264817              

Content

show
hide
Free keywords: EDTA; Effective Concentration; Free Media; External Medium; Permeability Change
 Abstract: The exposure of red cell ghosts to external Ca++ and K+ leads to a rapid net K+ efflux. Preincubation of the ghosts for various lengths of time in the absence of K+ in the external medium prior to a challenge with maximally effective concentrations of Ca++ and K+ renders the ghosts unresponsive to that challenge with a half-time of about 7–10 min. Preincubation at a range of K+ concentrations for a fixed length of time (60 min) prior to the challenge revealed that K+ concentrations of about 500 μm or more suffice to maintain the K+ channel in a maximally responsive state for at least 60 min. These K+ concentrations are considerably lower than the K+ concentrations required to make the responsive channel respond with a maximal rate of K+ efflux. Thus, external K+ is not only necessary to induce the permeability change but also to maintain the transport system in a functional state.

The presence of Mg++ or ethylenediamine-tetraacetic acid (EDTA) in the K+-free preincubation media preserves the responsiveness to a challenge with Ca++ plus K+. In contrast to external K+, the presence of external Ca++ does not reduce but rather enhances the loss of responsiveness. An excess of EDTA prevents the effects of Ca++ while washes with EDTA after exposure to Ca++ do not reverse them.

In red cell ghosts that contain Ca++ buffers, the transition from a responsive to a nonresponsive state incubation in the absence of external K+ is enhanced. The effects of incubation in the presence of Ca++ in K+-free media are reversed; external Ca++ now reduces the rate at which the responsiveness is lost. The loss of responsiveness after incubation in K+-free media prior to a challenge with external K+ and internal Ca++ does also take place when K+-efflux from red cell ghosts is measured by means of42K+ into media that have the same K+ concentrations as the ghost interior. This confirms that the effects of K+-free incubation are due to the modification of the K+-selective channel rather than to an inhibition of diffusive Cl--efflux.

Details

show
hide
Language(s): eng - English
 Dates: 1980-05-271980-02-261980-06
 Publication Status: Issued
 Pages: 13
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/BF01868998
PMID: 6259362
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Membrane Biology
  Other : J. Membr. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Springer-Verlag New York
Pages: - Volume / Issue: 57 Sequence Number: - Start / End Page: 119 - 131 Identifier: ISSN: 0022-2631
CoNE: https://pure.mpg.de/cone/journals/resource/954925415943