English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Morita invariance of equivariant Lusternik-Schnirelmann category and invariant topological complexity

Angel, A., Colman, H., Grant, M., & Oprea, J. (2020). Morita invariance of equivariant Lusternik-Schnirelmann category and invariant topological complexity. Theory and Applications of Categories, 35(7), 179-195.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
arXiv:1908.04949.pdf (Preprint), 219KB
Name:
arXiv:1908.04949.pdf
Description:
File downloaded from arXiv at 2021-01-28 13:06
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Angel-Colman-Grant-Oprea_Morita invariance of equivariant Lusternik-Schnirelmann category and invariant topological complexity_2020.pdf (Publisher version), 377KB
Name:
Angel-Colman-Grant-Oprea_Morita invariance of equivariant Lusternik-Schnirelmann category and invariant topological complexity_2020.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© A. Angel, H. Colman, M. Grant and J. Oprea, 2020. Permission to copy for private use granted.
License:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Angel, A.1, Author              
Colman, Hellen, Author
Grant, Mark, Author
Oprea, John, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Topology, Category Theory
 Abstract: We use the homotopy invariance of equivariant principal bundles to prove that the equivariant ${\mathcal A}$-category of Clapp and Puppe is invariant under Morita equivalence. As a corollary, we obtain that both the equivariant Lusternik-Schnirelmann category of a group action and the invariant topological complexity are invariant under Morita equivalence. This allows a definition of topological complexity for orbifolds.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Published online
 Pages: 18
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1908.04949
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Theory and Applications of Categories
  Abbreviation : Theory Appl. Categ.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 35 (7) Sequence Number: - Start / End Page: 179 - 195 Identifier: -