Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Accurate thermochemistry from a parameterized coupled-cluster singles and doubles model and a local pair natural orbital based implementation for applications to larger systems

Huntington, L. M. J., Hansen, A., Neese, F., & Nooijen, M. (2012). Accurate thermochemistry from a parameterized coupled-cluster singles and doubles model and a local pair natural orbital based implementation for applications to larger systems. The Journal of Chemical Physics, 136(6): 064101. doi:10.1063/1.3682325.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Huntington, Lee M. J.1, Autor
Hansen, Andreas2, Autor           
Neese, Frank2, Autor           
Nooijen, Marcel1, Autor
Affiliations:
1Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1, ou_persistent22              
2Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society, ou_3023879              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We have recently introduced a parameterized coupled-cluster singles and doubles model (pCCSD(α, β)) that consists of a bivariate parameterization of the CCSD equations and is inspired by the coupled electron pair approximations. In our previous work, it was demonstrated that the pCCSD(−1, 1) method is an improvement over CCSD for the calculation of geometries, harmonic frequencies, and potential energy surfaces for single bond-breaking. In this paper, we find suitable pCCSD parameters for applications in reaction thermochemistry and thermochemical kinetics. The motivation is to develop an accurate and economical methodology that, when coupled with a robust local correlation framework based on localized pair natural orbitals, is suitable for large-scale thermochemical applications for sizeable molecular systems. It is demonstrated that the original pCCSD(−1, 1) method and several other pCCSD methods are a significant improvement upon the standard CCSD approach and that these methods often approach the accuracy of CCSD(T) for the calculation of reaction energies and barrier heights. We also show that a local version of the pCCSD methodology, implemented within the local pair natural orbital (LPNO) based CCSD code in ORCA, is sufficiently accurate for wide-scale chemical applications. The LPNO based methodology allows us for routine applications to intermediate sized (20–100 atoms) molecular systems and is a significantly more accurate alternative to MP2 and density functional theory for the prediction of reaction energies and barrier heights.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-02-082012-02-14
 Publikationsstatus: Erschienen
 Seiten: 17
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.3682325
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Kurztitel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 136 (6) Artikelnummer: 064101 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226