English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The cotangent complex and Thom spectra

Rasekh, N., & Stonek, B. (in press). The cotangent complex and Thom spectra. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Published Online - Print pending. doi:10.1007/s12188-020-00226-8.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
https://doi.org/10.1007/s12188-020-00226-8 (Publisher version)
Description:
-

Creators

show
hide
 Creators:
Rasekh, Nima, Author
Stonek, Bruno1, Author              
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Topology, Algebraic Geometry
 Abstract: The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of $E_\infty$-ring spectra in various ways. In this work we first establish, in the context of $\infty$-categories and using Goodwillie's calculus of functors, that various definitions of the cotangent complex of a map of $E_\infty$-ring spectra that exist in the literature are equivalent. We then turn our attention to a specific example. Let $R$ be an $E_\infty$-ring spectrum and $\mathrm{Pic}(R)$ denote its Picard $E_\infty$-group. Let $Mf$ denote the Thom $E_\infty$-$R$-algebra of a map of $E_\infty$-groups $f:G\to \mathrm{Pic}(R)$; examples of $Mf$ are given by various flavors of cobordism spectra. We prove that the cotangent complex of $R\to Mf$ is equivalent to the smash product of $Mf$ and the connective spectrum associated to $G$.

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Accepted / In Press
 Pages: 24
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2005.01382
DOI: 10.1007/s12188-020-00226-8
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer
Pages: - Volume / Issue: - Sequence Number: Published Online - Print pending Start / End Page: - Identifier: -