Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Generative Model-Based Loss to the Rescue: A Method to Overcome Annotation Errors for Depth-Based Hand Pose Estimation

Wang, J., Mueller, F., Bernard, F., & Theobalt, C. (2020). Generative Model-Based Loss to the Rescue: A Method to Overcome Annotation Errors for Depth-Based Hand Pose Estimation. Retrieved from https://arxiv.org/abs/2007.03073.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier
Latex : Generative Model-Based Loss to the Rescue: {A} Method to Overcome Annotation Errors for Depth-Based Hand Pose Estimation

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:2007.03073.pdf (Preprint), 2MB
Name:
arXiv:2007.03073.pdf
Beschreibung:
File downloaded from arXiv at 2021-02-08 10:21
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wang, Jiayi1, Autor           
Mueller, Franziska1, Autor           
Bernard, Florian1, Autor           
Theobalt, Christian1, Autor                 
Affiliations:
1Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Computer Vision and Pattern Recognition, cs.CV
 Zusammenfassung: We propose to use a model-based generative loss for training hand pose
estimators on depth images based on a volumetric hand model. This additional
loss allows training of a hand pose estimator that accurately infers the entire
set of 21 hand keypoints while only using supervision for 6 easy-to-annotate
keypoints (fingertips and wrist). We show that our partially-supervised method
achieves results that are comparable to those of fully-supervised methods which
enforce articulation consistency. Moreover, for the first time we demonstrate
that such an approach can be used to train on datasets that have erroneous
annotations, i.e. "ground truth" with notable measurement errors, while
obtaining predictions that explain the depth images better than the given
"ground truth".

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-07-062020
 Publikationsstatus: Online veröffentlicht
 Seiten: 8 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2007.03073
BibTex Citekey: Wang_2007.03073
URI: https://arxiv.org/abs/2007.03073
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: