English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish

Friedrich, R. W., & Laurent, G. (2004). Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. J Neurophysiol, 91(6), 2658-69. doi:10.1152/jn.01143.2003.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Friedrich, R. W., Author
Laurent, Gilles1, Author           
Affiliations:
1Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society, ou_2461701              

Content

show
hide
Free keywords: Action Potentials/*physiology Animals *Odorants Olfactory Bulb/*physiology Olfactory Receptor Neurons/*physiology Smell/*physiology Zebrafish
 Abstract: The processing of odor-evoked activity in the olfactory bulb (OB) of zebrafish was studied by extracellular single unit recordings from the input and output neurons, i.e., olfactory receptor neurons (ORNs) and mitral cells (MCs), respectively. A panel of 16 natural amino acid odors was used as stimuli. Responses of MCs, but not ORNs, changed profoundly during the first few hundred milliseconds after response onset. In MCs, but not ORNs, the total evoked excitatory activity in the population was initially odor-dependent but subsequently converged to a common level. Hence, the overall population activity is regulated by network interactions in the OB. The tuning widths of both ORN and MC response profiles were similar and, on average, stable over time. However, when analyzed for individual neurons, MC response profiles could sharpen (excitatory response to fewer odors) or broaden (excitatory response to more odors), whereas ORN response profiles remained nearly unchanged. Several observations indicate that dynamic inhibition plays an important role in this remodeling. Finally, the reliability of odor identification based on MC population activity patterns improved over time, whereas odor identification based on ORN activity patterns was most reliable early in the odor response. These results demonstrate that several properties of MC, but not ORN, activity change during the initial phase of the odor response with important consequences for odor-encoding activity patterns. Furthermore, our data indicate that inhibitory interactions in the OB are important in dynamically shaping the activity of OB output neurons.

Details

show
hide
Language(s):
 Dates: 2004-02-13
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: 14960561
DOI: 10.1152/jn.01143.2003
ISSN: 0022-3077 (Print)0022-3077 (Linking)
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: J Neurophysiol
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 91 (6) Sequence Number: - Start / End Page: 2658 - 69 Identifier: -