English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C–H bond activation transition state

Ye, S., & Neese, F. (2011). Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C–H bond activation transition state. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1228-1233. doi:10.1073/pnas.1008411108.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ye, Shengfa1, Author           
Neese, Frank1, Author           
Affiliations:
1Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, ou_persistent22              

Content

show
hide
Free keywords: density functional calculation; nonheme iron; reaction mechanism
 Abstract: Oxo-iron(IV) species are implicated as key intermediates in the catalytic cycles of heme and nonheme oxygen activating iron enzymes that selectively functionalize aliphatic C–H bonds. Ferryl complexes can exist in either quintet or triplet ground states. Density functional theory calculations predict that the quintet oxo-iron(IV) species is more reactive toward C–H bond activation than its corresponding triplet partner, however; the available experimental data on model complexes suggests that both spin multiplicities display comparable reactivities. To clarify this ambiguity, a detailed electronic structure analysis of alkane hydroxylation by an oxo-iron(IV) species on different spin-state potential energy surfaces is performed. According to our results, the lengthening of the Fe–oxo bond in ferryl reactants, which is the part of the reaction coordinate for H-atom abstraction, leads to the formation of oxyl-iron(III) species that then perform actual C–H bond activation. The differential reactivity stems from the fact that the two spin states have different requirements for the optimal angle at which the substrate should approach the (FeO)2+ core because distinct electron acceptor orbitals are employed on the two surfaces. The H-atom abstraction on the quintet surface favors the “σ-pathway” that requires an essentially linear attack; by contrast a “π-channel” is operative on the triplet surface that leads to an ideal attack angle near 90°. However, the latter is not possible due to steric crowding; thus, the attenuated orbital interaction and the unavoidably increased Pauli repulsion result in the lower reactivity of the triplet oxo-iron(IV) complexes

Details

show
hide
Language(s): eng - English
 Dates: 2011-01-25
 Publication Status: Issued
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1073/pnas.1008411108
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : PNAS
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 108 (4) Sequence Number: - Start / End Page: 1228 - 1233 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230