English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Zero field splitting of the chalcogen diatomics using relativistic correlated wave-function methods

Rota, J.-B., Knecht, S., Fleig, T., Ganyushin, D., Saue, T., Neese, F., et al. (2011). Zero field splitting of the chalcogen diatomics using relativistic correlated wave-function methods. The Journal of Chemical Physics, 135(11): 114106. doi:10.1063/1.3636084.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Rota, J.-B.1, Author
Knecht, S.2, 3, Author
Fleig, T.4, Author
Ganyushin, D.5, Author
Saue, T.2, 4, Author
Neese, Frank5, Author           
Bolvin, H.2, 4, Author
Affiliations:
1Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 allée d’Italie 69364 Lyon Cédex 07, France, ou_persistent22              
2Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal 67000 Strasbourg, France, ou_persistent22              
3Department of Physics and Chemistry, Campusvej 55, 5230 Odense M, Denmark, ou_persistent22              
4Laboratoire de Chimie et de Physique Quantiques, 118 route de Narbonne, 31062 Toulouse Cédex 04, France, ou_persistent22              
5Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely, the X21, a2, and b0+ states, is calculated using wave-function theory based methods. Two-component (2c) and four-component (4c) multireference configuration interaction (MRCI) and Fock-space coupled cluster (FSCC) methods are used as well as two-step methods spin-orbit complete active space perturbation theory at 2nd order (SO-CASPT2) and spin-orbit difference dedicated configuration interaction (SO-DDCI). The energy of the X21 state corresponds to the zero-field splitting of the ground state spin triplet. It is described with high accuracy by the 2- and 4-component methods in comparison with experiment, whereas the two-step methods give about 80% of the experimental values. The b0+ state is well described by 4c-MRCI, SO-CASPT2, and SO-DDCI, but FSCC fails to describe this state and an intermediate Hamiltonian FSCC ansatz is required. The results are readily rationalized by a two-parameter model; Δε, the π* spinor splitting by spin-orbit coupling and K, the exchange integral between the π1 and the π−1
spinors with, respectively, angular momenta 1 and −1. This model holds for all systems under study with the exception of Po2.

Details

show
hide
Language(s): eng - English
 Dates: 2011-06-152011-09-192011-09-21
 Publication Status: Issued
 Pages: 13
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1063/1.3636084
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Chemical Physics
  Abbreviation : J. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Institute of Physics
Pages: - Volume / Issue: 135 (11) Sequence Number: 114106 Start / End Page: - Identifier: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226