English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Physical parameter space of bimetric theory and SN1a constraints

Lüben, M., Schmidt-May, A., & Weller, J. (2020). Physical parameter space of bimetric theory and SN1a constraints. Journal of Cosmology and Astroparticle Physics, 2020(9): 024. doi:10.1088/1475-7516/2020/09/024.

Item is

Files

show Files
hide Files
:
Physical parameter space of bimetric theory and SN1a constraints.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
Physical parameter space of bimetric theory and SN1a constraints.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Lüben, Marvin, Author
Schmidt-May, Angnis, Author
Weller, Jochen1, Author           
Affiliations:
1Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159895              

Content

show
hide
Free keywords: -
 Abstract: Bimetric theory describes a massless and a massive spin-2 field with fully non-linear (self-)interactions. It has a rich phenomenology and has been successfully tested with several data sets. However, the observational constraints have not been combined in a consistent framework, yet. We propose a parametrization of bimetric solutions in terms of the effective cosmological constant Λ and the mass mFP of the spin-2 field as well as its coupling strength to ordinary matter α¯. This simplifies choosing priors in statistical analysis and allows to directly constrain these parameters with observational data not only from local systems but also from cosmology. By identifying the physical vacuum of bimetric theory these parameters are uniquely determined. We work out the dictionary for the new parametrization for various submodels and present the implied consistency constraints on the physical parameter space. We then apply the dictionary to derive observational constraints from SN1a on the physical parameters. As a result we find that even self-accelerating models with a heavy spin-2 field are in perfect agreement with current supernova data.

Details

show
hide
Language(s): eng - English
 Dates: 2020-11-14
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1088/1475-7516/2020/09/024
Other: LOCALID: 3286372
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Cosmology and Astroparticle Physics
  Abbreviation : J. Cosmol. Astropart. Phys.
  Abbreviation : JCAP
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2020 (9) Sequence Number: 024 Start / End Page: - Identifier: ISSN: 1475-7516