日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Intrinsic neuronal properties switch the mode of information transmission in networks

Gjorgjieva, J., Mease, R. A., Moody, W. J., & Fairhall, A. L. (2014). Intrinsic neuronal properties switch the mode of information transmission in networks. PLoS Comput Biol, 10(12):. doi:10.1371/journal.pcbi.1003962.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0008-0D5B-5 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0008-7B44-2
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:
非表示:
URL:
https://www.ncbi.nlm.nih.gov/pubmed/25474701 (全文テキスト(全般))
説明:
-
OA-Status:

作成者

表示:
非表示:
 作成者:
Gjorgjieva, Julijana1, 著者           
Mease, R. A., 著者
Moody, W. J., 著者
Fairhall, A. L., 著者
所属:
1Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Max Planck Society, ou_2461694              

内容説明

表示:
非表示:
キーワード: Action Potentials/physiology Animals Cerebral Cortex/cytology Computational Biology Ion Channels/metabolism *Models, Neurological Nerve Net/*physiology Neurons/cytology/*physiology Rats Synaptic Transmission/*physiology
 要旨: Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission.

資料詳細

表示:
非表示:
言語:
 日付: 2014-12-05
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): その他: 25474701
DOI: 10.1371/journal.pcbi.1003962
ISSN: 1553-7358 (Electronic)1553-734X (Linking)
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PLoS Comput Biol
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 10 (12) 通巻号: e1003962 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -