日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances

Onasch, S., & Gjorgjieva, J. (2020). Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances. J Neurosci, 40(16), 3186-3202. doi:10.1523/JNEUROSCI.0985-19.2020.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0008-0D6D-1 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0008-0D6E-0
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:
非表示:
URL:
https://www.ncbi.nlm.nih.gov/pubmed/32179572 (全文テキスト(全般))
説明:
-
OA-Status:

作成者

表示:
非表示:
 作成者:
Onasch, S., 著者
Gjorgjieva, Julijana1, 著者           
所属:
1Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Max Planck Society, ou_2461694              

内容説明

表示:
非表示:
キーワード: Action Potentials/physiology Humans *Models, Neurological Nerve Net/*physiology Neural Conduction/*physiology Neurons/*physiology Synapses/*physiology
 要旨: Neurons and circuits each with a distinct balance of intrinsic and synaptic conductances can generate similar behavior but sometimes respond very differently to perturbation. Examining a large family of circuit models with non-identical neurons and synapses underlying rhythmic behavior, we analyzed the circuits' response to modifications in single and multiple intrinsic conductances in the individual neurons. To summarize these changes over the entire range of perturbed parameters, we quantified circuit output by defining a global stability measure. Using this measure, we identified specific subsets of conductances that when perturbed generate similar behavior in diverse individuals of the population. Our unbiased clustering analysis enabled us to quantify circuit stability when simultaneously perturbing multiple conductances as a nonlinear combination of single conductance perturbations. This revealed surprising conductance combinations that can predict the response to specific perturbations, even when the remaining intrinsic and synaptic conductances are unknown. Therefore, our approach can expose hidden variability in the balance of intrinsic and synaptic conductances of the same neurons across different versions of the same circuit solely from the circuit response to perturbations. Developed for a specific family of model circuits, our quantitative approach to characterizing high-dimensional degenerate systems provides a conceptual and analytic framework to guide future theoretical and experimental studies on degeneracy and robustness.SIGNIFICANCE STATEMENT Neural circuits can generate nearly identical behavior despite neuronal and synaptic parameters varying several-fold between individual instantiations. Yet, when these parameters are perturbed through channel deletions and mutations or environmental disturbances, seemingly identical circuits can respond very differently. What distinguishes inconsequential perturbations that barely alter circuit behavior from disruptive perturbations that drastically disturb circuit output remains unclear. Focusing on a family of rhythmic circuits, we propose a computational approach to reveal hidden variability in the intrinsic and synaptic conductances in seemingly identical circuits based solely on circuit output to different perturbations. We uncover specific conductance combinations that work similarly to maintain stability and predict the effect of changing multiple conductances simultaneously, which often results from neuromodulation or injury.

資料詳細

表示:
非表示:
言語:
 日付: 2020-03-18
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): その他: 32179572
DOI: 10.1523/JNEUROSCI.0985-19.2020
ISSN: 1529-2401 (Electronic)0270-6474 (Linking)
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: J Neurosci
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 40 (16) 通巻号: - 開始・終了ページ: 3186 - 3202 識別子(ISBN, ISSN, DOIなど): -