English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The rise and emergence of untwisted toroidal flux ropes on the sun

Knizhnik, K., Leake, J., Linton, M., & Dacie, S. (2021). The rise and emergence of untwisted toroidal flux ropes on the sun. Astrophysical Journal, 907: 19. doi:10.3847/1538-4357/abccc0.

Item is

Files

show Files
hide Files
:
Knizhnik_2021_ApJ_907_19.pdf (Publisher version), 6MB
Name:
Knizhnik_2021_ApJ_907_19.pdf
Description:
-
OA-Status:
Miscellaneous
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
© IOP
License:
-

Locators

show

Creators

show
hide
 Creators:
Knizhnik, K.J.1, Author
Leake, J.E.1, Author
Linton, M.G.1, Author
Dacie, Sally2, Author           
Affiliations:
1External Organizations, ou_persistent22              
2Global Circulation and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_3001850              

Content

show
hide
Free keywords: -
 Abstract: Magnetic flux ropes (MFRs) rising buoyantly through the Sun's convection zone are thought to be subject to viscous forces preventing them from rising coherently. Numerous studies have suggested that MFRs require a minimum twist in order to remain coherent during their rise. Furthermore, even MFRs that get to the photosphere may be unable to successfully emerge into the corona unless they are at least moderately twisted, since the magnetic pressure gradient needs to overcome the weight of the photospheric plasma. To date, however, no lower limit has been placed on the critical minimum twist required for an MFR to rise coherently through the convection zone or emerge through the photosphere. In this paper, we simulate an untwisted toroidal MFR that is able to rise from the convection zone and emerge through the photosphere as an active region that resembles those observed on the Sun. We show that untwisted MFRs can remain coherent during their rise and then pile up near the photosphere, triggering undular instability, allowing the MFR to emerge through the photosphere. We propose that the toroidal geometry of our MFR is critical for its coherent rise. Upon emergence, a pair of lobes rises into the corona. The two lobes then interact and reconnect, resulting in a localized high speed jet. The resulting photospheric magnetogram displays the characteristic salt-and-pepper structure often seen in observations. Our major result is that MFRs need not be twisted to rise coherently through the convection zone and emerge through the photosphere. © 2021. The American Astronomical Society. All rights reserved.

Details

show
hide
Language(s): eng - English
 Dates: 2021-01-21
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.3847/1538-4357/abccc0
BibTex Citekey: KnizhnikLeakeEtAl2021
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astrophysical Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: IOP Publishing Ltd
Pages: - Volume / Issue: 907 Sequence Number: 19 Start / End Page: - Identifier: ISSN: 0004637X