English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Measurement of isolated-photon plus two-jet production in $pp$ collisions at $\sqrt s=13$ TeV with the ATLAS detector

ATLAS Collaboration (2020). Measurement of isolated-photon plus two-jet production in $pp$ collisions at $\sqrt s=13$ TeV with the ATLAS detector. Journal of High Energy Physics, 03, 179. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2019-266.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
ATLAS Collaboration1, Author
Affiliations:
1Max Planck Institute for Physics, Max Planck Society and Cooperation Partners, ou_2253650              

Content

show
hide
Free keywords: ATLAS
 Abstract: The dynamics of isolated-photon plus two-jet production in $pp$ collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, $\gamma+jet+jet$. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as the next-to-leading-order QCD predictions from SHERPA are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.

Details

show
hide
Language(s):
 Dates: 2020
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of High Energy Physics
  Abbreviation : JHEP
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 03 Sequence Number: - Start / End Page: 179 Identifier: -