English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector

ATLAS Collaboration (2020). Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector. Physical Review Letters, 124, 222002. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2020-43.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
ATLAS Collaboration1, Author
Affiliations:
1Max Planck Institute for Physics, Max Planck Society and Cooperation Partners, ou_2253650              

Content

show
hide
Free keywords: ATLAS
 Abstract: The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

Details

show
hide
Language(s):
 Dates: 2020
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys.Rev.Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 124 Sequence Number: - Start / End Page: 222002 Identifier: -