English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  High-throughput calculations of magnetic topological materials

Xu, Y., Elcoro, L., Song, Z.-D., Wieder, B. J., Vergniory, M. G., Regnault, N., et al. (2020). High-throughput calculations of magnetic topological materials. Nature, 586(7831), 702-707. doi:10.1038/s41586-020-2837-0.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Xu, Yuanfeng1, Author
Elcoro, Luis1, Author
Song, Zhi-Da1, Author
Wieder, Benjamin J.1, Author
Vergniory, M. G.1, Author
Regnault, Nicolas1, Author
Chen, Yulin1, Author
Felser, Claudia2, Author              
Bernevig, B. Andrei1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Content

show
hide
Free keywords: -
 Abstract: The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators(1-3), have directed fundamental research in solid-state materials. Topological quantum chemistry(4) has enabled the understanding of and the search for paramagnetic topological materials(5,6). Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC)(7), here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials.

Details

show
hide
Language(s): eng - English
 Dates: 2020-10-292020-10-29
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000623956700001
DOI: 10.1038/s41586-020-2837-0
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
  Abbreviation : Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 586 (7831) Sequence Number: - Start / End Page: 702 - 707 Identifier: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238