Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution

She, S., Zhu, Y., Tahini, H. A., Hu, Z., Weng, S.-C., Wu, X., et al. (2021). A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 8: 011407, pp. 1-10. doi:10.1063/5.0033912.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
She, Sixuan1, Autor
Zhu, Yinlong1, Autor
Tahini, Hassan A.1, Autor
Hu, Zhiwei2, Autor           
Weng, Shih-Chang1, Autor
Wu, Xinhao1, Autor
Chen, Yubo1, Autor
Guan, Daqin1, Autor
Song, Yufei1, Autor
Dai, Jie1, Autor
Smith, Sean C.1, Autor
Wang, Huanting1, Autor
Zhou, Wei1, Autor
Shao, Zongping1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Electrocatalysts, Electronic structure, Iron compounds, Modulation, Oxygen evolution reaction, Perovskite, Potassium hydroxide, Strontium compounds, Brownmillerite structure, Catalyst surfaces, Intrinsic activities, Mass transport rate, Oxygen evolution reaction (oer), Perovskite oxides, Theoretical calculations, Transport behavior, Molecular oxygen
 Zusammenfassung: Perovskite oxides are of particular interest for the oxygen evolution reaction (OER) due to their high intrinsic activity. However, low surface area and nonpores in bulk phase generally limit the mass transport and thereby result in unsatisfactory mass activity. Herein, we propose a "molecular-level strategy"with the simultaneous modulation of the ordered pores on the oxygen-deficient sites along with sulfur (S) substitution on oxygen sites at the molecular level to boost the mass transport behavior of perovskite electrocatalyst for enhanced mass activity. As a proof of concept, the elaborately designed brownmillerite oxide Sr2Co1.6Fe0.4O4.8S0.2 (S-BM-SCF) shows approximately fourfold mass activity enhancement in 1 M KOH compared with the pristine SrCo0.8Fe0.2O3-δ (SCF) perovskite. Comprehensive experimental results, in combination with theoretical calculations, demonstrate that the intrinsic molecular-level pores in the brownmillerite structure can facilitate reactive hydroxyl ion (OH-) uptake into the oxygen-vacant sites and that S doping further promotes OH- adsorption by electronic structure modulation, thus accelerating mass transport rate. Meanwhile, the S-BM-SCF can significantly weaken the resistance of O2 desorption on the catalyst surface, facilitating the O2 evolution. This work deepens the understanding of how mass transport impacts the kinetics of the OER process and opens up a new avenue to design high-performance catalysts on the molecular level. © 2021 Author(s).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-03-022021-03-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1063/5.0033912
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Applied Physics Reviews
  Kurztitel : Appl. Phys. Rev.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: USA : American Institute of Physics
Seiten: - Band / Heft: 8 Artikelnummer: 011407 Start- / Endseite: 1 - 10 Identifikator: ISSN: 1931-9401
CoNE: https://pure.mpg.de/cone/journals/resource/1931-9401