English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A model of Ponto-Geniculo-Occipital waves supports bidirectional control of cortical plasticity across sleep-stages

Shao, K., Ramirez Villegas, J., Logothetis, N., & Besserve, M. (submitted). A model of Ponto-Geniculo-Occipital waves supports bidirectional control of cortical plasticity across sleep-stages.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Shao, K1, 2, Author           
Ramirez Villegas, J, Author           
Logothetis, NK1, 2, Author           
Besserve, M1, 2, Author           
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: During sleep, cortical network connectivity likely undergoes both synaptic potentiation and depression through system consolidation and homeostatic processes. However, how these modifications are coordinated across sleep stages remains largely unknown. Candidate mechanisms are Ponto-Geniculo-Occipital (PGO) waves, propagating across several structures during Rapid Eye Movement (REM) sleep and the transitional stage from non-REM sleep to REM sleep (pre-REM), and exhibiting sleep stage-specific dynamic patterns. To understand their impact on cortical plasticity, we built an acetylcholine-modulated neural mass model of PGO wave propagation through pons, thalamus and cortex, reproducing a broad range of electrophysiological characteristics across sleep stages. Using a population model of Spike-Time-Dependent Plasticity, we show that recurrent cortical circuits in different transient regimes depending on the sleep stage with different impacts on plasticity. Specifically, this leads to the potentiation of cortico-cortical synapses during pre-REM, and to their depression during REM sleep. Overall, our results provide a new view on how transient sleep events and their associated sleep stage may implement a precise control of system-wide plastic changes.

Details

show
hide
Language(s):
 Dates: 2021-03
 Publication Status: Submitted
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1101/2021.03.16.432817
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show