日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Importance of Direct Spin−Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes:  A Case Study

Neese, F. (2006). Importance of Direct Spin−Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes:  A Case Study. Journal of the American Chemical Society, 128(31), 10213-10222. doi:10.1021/ja061798a.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0008-3679-4 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0008-367A-3
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Neese, Frank1, 著者           
所属:
1Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: This work reports the evaluation of several theoretical approaches to the zero-field splitting (ZFS) in transition metal complexes. The experimentally well-known complex [Mn(acac)3] is taken as an example. The direct spin−spin contributions to the ZFS have been calculated on the basis of density functional theory (DFT) or complete active space self-consistent field (CASSCF) wave functions and have been found to be much more important than previously assumed. The contributions of the direct term may exceed ∼1 cm-1 in magnitude and therefore cannot be neglected in any treatment that aims at a realistic quantitative modeling of the ZFS. In the DFT framework, two different variants to treat the spin−orbit coupling (SOC) term have been evaluated. The first approach is based on previous work by Pederson, Khanna, and Kortus, and the second is based on a “quasi-restricted” DFT treatment which is rooted in our previous work on ZFS. Both approaches provide very similar results and underestimate the SOC contribution to the ZFS by a factor of 2 or more. The SOC is represented by an accurate multicenter spin−orbit mean-field (SOMF) approximation which is compared to the popular effective DFT potential-derived SOC operator. In addition to the DFT results, direct “infinite order” ab initio calculations of the SOC contribution to the ZFS based on CASSCF wave functions, the spectroscopy-oriented configuration interaction (SORCI), and the difference-dedicated CI (DDCI) approach are reported. In general, the multireference ab initio results provide a more realistic description of the ZFS in [Mn(acac)3]. The conclusions likely carry over to many other systems. This is attributed to the explicit treatment of the multiplet effects which are of dominant importance, since the calculations demonstrate that, even in the high-spin d4 system Mn(III), the spin-flip excitations make the largest contribution to the SOC. It is demonstrated that the ab initio methods can be used even for somewhat larger molecules (the present calculations were done with more than 500 basis functions) in a reasonable time frame. Much more economical but still fairly reasonable results have been achieved with the INDO/S treatment based on CASSCF and SOC-CI wave functions.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2006-04-052006-07-082006-08-01
 出版の状態: 出版
 ページ: 10
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1021/ja061798a
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of the American Chemical Society
  その他 : JACS
  省略形 : J. Am. Chem. Soc.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Washington, DC : American Chemical Society
ページ: - 巻号: 128 (31) 通巻号: - 開始・終了ページ: 10213 - 10222 識別子(ISBN, ISSN, DOIなど): ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870