Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  The dynamical regime and its importance for evolvability, task performance and generalization

Prosi, J., Khajehabdollahi, S., Giannakakis, E., Martius, G., & Levina, A. (2021). The dynamical regime and its importance for evolvability, task performance and generalization. In Artificial Life Conference Proceedings. MIT Press. doi:10.1162/isal_a_00412.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Prosi, J1, Autor           
Khajehabdollahi, S, Autor           
Giannakakis, E2, Autor           
Martius, G., Autor           
Levina, A2, Autor           
Affiliations:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_3017468              
2Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3505519              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: It has long been hypothesized that operating close to the critical state is beneficial for natural and artificial systems. We test this hypothesis by evolving foraging agents controlled by neural networks that can change the system's dynamical regime throughout evolution. Surprisingly, we find that all populations, regardless of their initial regime, evolve to be subcritical in simple tasks and even strongly subcritical populations can reach comparable performance. We hypothesize that the moderately subcritical regime combines the benefits of generalizability and adaptability brought by closeness to criticality with the stability of the dynamics characteristic for subcritical systems. By a resilience analysis, we find that initially critical agents maintain their fitness level even under environmental changes and degrade slowly with increasing perturbation strength. On the other hand, subcritical agents originally evolved to the same fitness, were often rendered utterly inadequate and degraded faster. We conclude that although the subcritical regime is preferable for a simple task, the optimal deviation from criticality depends on the task difficulty: for harder tasks, agents evolve closer to criticality. Furthermore, subcritical populations cannot find the path to decrease their distance to criticality. In summary, our study suggests that initializing models near criticality is important to find an optimal and flexible solution.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-07
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1162/isal_a_00412
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: ALIFE 2021: The 2021 Conference on Artificial Life
Veranstaltungsort: Praha, Czech Republic
Start-/Enddatum: 2021-07-19 - 2021-07-23

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Artificial Life Conference Proceedings
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: MIT Press
Seiten: 9 Band / Heft: 2021 Artikelnummer: 79 Start- / Endseite: - Identifikator: -