English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The functional chameleon of materials chemistry—combining carbon structures into all-carbon hybrid nanomaterials with intrinsic porosity to overcome the “functionality-conductivity-dilemma” in electrochemical energy storage and electrocatalysis

Ilic, I., & Oschatz, M. (2021). The functional chameleon of materials chemistry—combining carbon structures into all-carbon hybrid nanomaterials with intrinsic porosity to overcome the “functionality-conductivity-dilemma” in electrochemical energy storage and electrocatalysis. Small, 17(19): 2007508. doi:10.1002/smll.202007508.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
Name:
Article.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Ilic, Ivan1, Author              
Oschatz, Martin2, Author              
Affiliations:
1Clemens Liedel, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2288694              
2Martin Oschatz, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2364733              

Content

show
hide
Free keywords: carbon nanomaterials, electrochemical energy storage and energy conversion, hybrid materials, nanoconfinement, porous materials
 Abstract: Nanoporous carbon materials can cover a remarkably wide range of physicochemical properties. They are widely applied in electrochemical energy storage and electrocatalysis. As a matter of fact, all these applications combine a chemical process at the electrode–electrolyte interface with the transport (and possibly the transfer) of electrons. This leads to multiple requirements which can hardly be fulfilled by one and the same material. This “functionality‐conductivity‐dilemma” can be minimized when multiple carbon‐based compounds are combined into porous all‐carbon hybrid nanomaterials. This article is giving a broad and general perspective on this approach from the viewpoint of materials chemists. The problem and existing solutions are first summarized. This is followed by an overview of the most important design principles for such porous materials, a chapter discussing recent examples from different fields where the formation of comparable structures has already been successfully applied, and an outlook over the future development of this field that is foreseen.

Details

show
hide
Language(s): eng - English
 Dates: 2021-03-272021
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/smll.202007508
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Small
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 17 (19) Sequence Number: 2007508 Start / End Page: - Identifier: ISBN: 1613-6810