English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The Southern Ocean during the ice ages: A review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific

Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martinez-Garcia, A., Hain, M. P., et al. (2021). The Southern Ocean during the ice ages: A review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. Quaternary Science Reviews, 254: 106732. doi:10.1016/j.quascirev.2020.106732.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Hybrid

Creators

show
hide
 Creators:
Sigman, Daniel M.1, Author
Fripiat, Francois2, Author           
Studer, Anja S.1, Author
Kemeny, Preston C.1, Author
Martinez-Garcia, Alfredo2, Author           
Hain, Mathis P.1, Author
Ai, Xuyuan1, Author
Wang, Xingchen1, Author
Ren, Haojia1, Author
Haug, Gerald H.2, Author           
Affiliations:
1external, ou_persistent22              
2Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_2237635              

Content

show
hide
Free keywords: -
 Abstract: The Southern Ocean is widely recognized as a potential cause of the lower atmospheric concentration of CO2 during ice ages, but the mechanism is debated. Focusing on the Southern Ocean surface, we review biogeochemical paleoproxy data and carbon cycle concepts that together favor the view that both the Antarctic and Subantarctic Zones (AZ and SAZ) of the Southern Ocean played roles in lowering ice age CO2 levels. In the SAZ, the data indicate dust-driven iron fertilization of phytoplankton growth during peak ice age conditions. In the ice age AZ, the area-normalized exchange of water between the surface and subsurface appears to have been reduced, a state that we summarize as “isolation” of the AZ surface. Under most scenarios, this change would have stemmed the leak of biologically stored CO2 that occurs in the AZ today. SAZ iron fertilization during the last ice age fits with our understanding of ocean processes as gleaned from modern field studies and experiments; indeed, this hypothesis was proposed prior to evidentiary support. In contrast, AZ surface isolation is neither intuitive nor spontaneously generated in climate model simulations of the last ice age.

In a more prospective component of this review, the suggested causes for AZ surface isolation are considered in light of the subarctic North Pacific (SNP), where the paleoproxies of productivity and nutrient consumption indicate similar upper ocean biogeochemical changes over glacial cycles, although with different timings at deglaciation. Among the proposed initiators of glacial AZ surface isolation, a single mechanism is sought that can explain the changes in both the AZ and the SNP. The analysis favors a weakening and/or equatorward shift in the upwelling associated with the westerly winds, occurring in both hemispheres. This view is controversial, especially for the SNP, where there is evidence of enhanced upper water column ventilation during the last ice age. We offer an interpretation that may explain key aspects of the AZ and SNP observations. In both regions, with a weakening in westerly wind-driven upwelling, nutrients may have been “mined out” of the upper water column, possibly accompanied by a poleward “slumping” of isopycnals. In the AZ, this would have encouraged declines in both the nutrient content and the formation rate of new deep water, each of which would have contributed to the lowering of atmospheric CO2. Through several effects, the reduction in AZ upwelling may have invigorated the upwelling of deep water into the low latitude pycnocline, roughly maintaining the pycnocline’s supply of water and nutrients so as to (1) support the high productivity of the glacial SAZ and (2) balance the removal of water from the pycnocline by the formation of Glacial North Atlantic Intermediate Water. The proposed return route from the deep ocean to the surface resembles that of Broecker’s (1991) “global ocean conveyor,” but applying to the ice age as opposed to the modern ocean.

Details

show
hide
Language(s): eng - English
 Dates: 2021-02-15
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Quaternary Science Reviews
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Pergamon
Pages: - Volume / Issue: 254 Sequence Number: 106732 Start / End Page: - Identifier: ISSN: 0277-3791
CoNE: https://pure.mpg.de/cone/journals/resource/954925505268