Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels

Distler, T., Kretzschmar, L., Schneidereit, D., Girardo, S., Goswami, R., Friedrich, O., et al. (2021). Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels. Biomaterials Science, (9), 3051-3068. doi:10.1039/D0BM02117B.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Biomat Sci 2021 Distler.pdf (Verlagsversion), 34MB
Name:
Biomat Sci 2021 Distler.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© The Royal Society of Chemistry 2021 This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Distler, Thomas1, Autor
Kretzschmar, Lena1, Autor
Schneidereit, Dominik1, Autor
Girardo, Salvatore2, Autor           
Goswami, Ruchi2, Autor           
Friedrich, Oliver1, Autor
Detsch, Rainer1, Autor
Guck, Jochen1, 2, 3, Autor           
Boccaccini, Aldo R.1, Autor
Budday, Silvia1, Autor
Affiliations:
1Friedrich-Alexander-Universität Erlangen-Nürnberg, ou_persistent22              
2Guck Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164416              
3Guck Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society, ou_3596668              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: 3D-printing technologies, such as biofabrication, capitalize on the homogeneous distribution and growth of cells inside biomaterial hydrogels, ultimately aiming to allow for cell differentiation, matrix remodeling, and functional tissue analogues. However, commonly, only the mechanical properties of the bioinks or matrix materials are assessed, while the detailed influence of cells on the resulting mechanical properties of hydrogels remains insufficiently understood. Here, we investigate the properties of hydrogels containing cells and spherical PAAm microgel beads through multi-modal complex mechanical analyses in the small- and large-strain regimes. We evaluate the individual contributions of different filler concentrations and a non-fibrous oxidized alginate-gelatin hydrogel matrix on the overall mechanical behavior in compression, tension, and shear. Through material modeling, we quantify parameters that describe the highly nonlinear mechanical response of soft composite materials. Our results show that the stiffness significantly drops for cell- and bead concentrations exceeding four million per milliliter hydrogel. In addition, hydrogels with high cell concentrations (≥6 mio ml−1) show more pronounced material nonlinearity for larger strains and faster stress relaxation. Our findings highlight cell concentration as a crucial parameter influencing the final hydrogel mechanics, with implications for microgel bead drug carrier-laden hydrogels, biofabrication, and tissue engineering.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-02-092021-03-05
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1039/D0BM02117B
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biomaterials Science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge : Royal Society of Chemistry
Seiten: - Band / Heft: (9) Artikelnummer: - Start- / Endseite: 3051 - 3068 Identifikator: ISSN: 2047-4830
CoNE: https://pure.mpg.de/cone/journals/resource/2047-4830