Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime

Zou, Y., Xiao, K., Qin, Q., Shi, J.-W., Heil, T., Markushyna, Y., et al. (2021). Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime. ACS Nano, 15(4), 6551-6561. doi:10.1021/acsnano.0c09661.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 4MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zou, Yajun1, Autor           
Xiao, Kai2, Autor           
Qin, Qing3, Autor           
Shi, Jian-Wen, Autor
Heil, Tobias4, Autor           
Markushyna, Yevheniia1, Autor           
Jiang, Lei, Autor
Antonietti, Markus5, Autor           
Savateev, Aleksandr1, Autor           
Affiliations:
1Aleksandr Savateev, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2421702              
2Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863288              
3Martin Oschatz, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2364733              
4Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              
5Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Inhalt

einblenden:
ausblenden:
Schlagwörter: carbon nitride; nanotube; confined photocatalysis; nanometer flow reactors; enhanced flow
 Zusammenfassung: Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 105 s–1. Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-04-062021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acsnano.0c09661
BibTex Citekey: doi:10.1021/acsnano.0c09661
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Nano
  Andere : ACS Nano
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 15 (4) Artikelnummer: - Start- / Endseite: 6551 - 6561 Identifikator: ISSN: 1936-0851