English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Time-lagged independent component analysis of random walks and protein dynamics

Schultze, S., & Grubmüller, H. (2021). Time-lagged independent component analysis of random walks and protein dynamics. bioRxiv, 435940. doi:10.1101/2021.03.18.435940.

Item is

Files

show Files
hide Files
:
3310751.pdf (Preprint), 8MB
Name:
3310751.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Schultze, S.1, Author              
Grubmüller, H.2, Author              
Affiliations:
1Department of Theoretical and Computational Biophysics, MPI for Biophysical Chemistry, Max Planck Society, ou_578631              
2Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society, ou_578631              

Content

show
hide
Free keywords: -
 Abstract: Time-lagged independent component analysis (tICA) is a widely used dimension reduction method for the analysis of molecular dynamics (MD) trajectories and has proven particularly useful for the construction of protein dynamics Markov models. It identifies those ‘slow’ collective degrees of freedom onto which the projections of a given trajectory show maximal autocorrelation for a given lag time. Here we ask how much information on the actual protein dynamics and, in particular, the free energy landscape that governs these dynamics the tICA-projections of MD-trajectories contain, as opposed to noise due to the inherently stochastic nature of each trajectory. To answer this question, we have analyzed the tICA-projections of high dimensional random walks using a combination of analytical and numerical methods. We find that the projections resemble cosine functions and strongly depend on the lag time, exhibiting strikingly complex behaviour. In particular, and contrary to previous studies of principal component projections, the projections change non-continuously with increasing lag time. The tICA-projections of selected 1 μs protein trajectories and those of random walks are strikingly similar, particularly for larger proteins, suggesting that these trajectories contain only little information on the energy landscape that governs the actual protein dynamics. Further the tICA-projections of random walks show clusters very similar to those observed for the protein trajectories, suggesting that clusters in the tICA-projections of protein trajectories do not necessarily reflect local minima in the free energy landscape. We also conclude that, in addition to the previous finding that certain ensemble properties of non-converged protein trajectories resemble those of random walks, this is also true for their time correlations. Due to the higher complexity of the latter, this result also suggests tICA analyses as a more sensitive tool to test MD simulations for proper convergence.

Details

show
hide
Language(s): eng - English
 Dates: 2021-03-18
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Identifiers: DOI: 10.1101/2021.03.18.435940
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : -
Grant ID : SFB 1456
Funding program : -
Funding organization : DFG
Project name : -
Grant ID : 05K20EGA
Funding program : -
Funding organization : BMBF

Source 1

show
hide
Title: bioRxiv
Source Genre: Web Page
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 435940 Start / End Page: - Identifier: -