English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Rotating turbulent thermal convection at very large Rayleigh numbers

Wedi, M., van Gils, D. P., Bodenschatz, E., & Weiss, S. (2021). Rotating turbulent thermal convection at very large Rayleigh numbers. Journal of Fluid Mechanics, 912: A30. doi:10.1017/jfm.2020.1149.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wedi, Marcel1, Author           
van Gils, Dennis P.M., Author
Bodenschatz, Eberhard1, Author                 
Weiss, Stephan1, Author           
Affiliations:
1Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063287              

Content

show
hide
Free keywords: -
 Abstract: We report on turbulent thermal convection experiments in a rotating cylinder with a diameter (D) to height (H) aspect ratio of Γ=D/H=0.5. Using nitrogen and pressurised sulphur hexafluoride we cover Rayleigh numbers (Ra) from 8×109 to 8×1014 at Prandtl numbers 0.72≲Pr≲0.94. For these Ra we measure the global vertical heat flux (i.e. the Nusselt number – Nu), as well as statistical quantities of local temperature measurements, as a function of the rotation rate, i.e. the inverse Rossby number – 1/Ro. In contrast to measurements in fluids with a higher Pr we do not find a heat transport enhancement, but only a decrease of Nu with increasing 1/Ro. When normalised with Nu(0) for the non-rotating system, data for all different Ra collapse and, for sufficiently large 1/Ro, follow a power law Nu/Nu0∝(1/Ro)−0.43. Furthermore, we find that both the heat transport and the temperature field qualitatively change at rotation rates 1/Ro∗1=0.8 and 1/Ro∗2=4. We interpret the first transition at 1/Ro∗1 as change from a large-scale circulation roll to the recently discovered boundary zonal flow (BZF). The second transition at rotation rate 1/Ro∗2 is not associated with a change of the flow morphology, but is rather the rotation rate for which the BZF is at its maximum. For faster rotation the vertical transport of warm and cold fluid near the sidewall within the BZF decreases and hence so does Nu.

Details

show
hide
Language(s): eng - English
 Dates: 2021-02-152021-04-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1017/jfm.2020.1149
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Fluid Mechanics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 912 Sequence Number: A30 Start / End Page: - Identifier: ISSN: 0022-1120
ISSN: 1469-7645