English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Stable and Active Oxygen Reduction Catalysts with Reduced Noble Metal Loadings through Potential Triggered Support Passivation

Göhl, D., Rueß, H., Schlicht, S., Vogel, A., Rohwerder, M., Mayrhofer, K. J. J., et al. (2020). Stable and Active Oxygen Reduction Catalysts with Reduced Noble Metal Loadings through Potential Triggered Support Passivation. ChemElectroChem, 7(11), 2404-2409. doi:10.1002/celc.202000278.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Stable and Active Oxygen Reduction Catalysts with Reduced Noble Metal Loadings through Potential Triggered Support Passivation.pdf (Publisher version), 5MB
Name:
Stable and Active Oxygen Reduction Catalysts with Reduced Noble Metal Loadings through Potential Triggered Support Passivation.pdf
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
The Authors

Locators

show

Creators

show
hide
 Creators:
Göhl, Daniel1, Author              
Rueß, Holger2, Author              
Schlicht, Stefanie3, Author              
Vogel, Alexandra4, Author              
Rohwerder, Michael4, Author              
Mayrhofer, Karl Johann Jakob5, 6, Author              
Bachmann, Julien3, 7, Author              
Román-Leshkov, Yuriy8, Author              
Schneider, Jochen Michael9, Author              
Ledendecker, Marc1, 10, Author              
Affiliations:
1Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
2Materials Chemistry, RWTH Aachen University, Kopernikusstraße 10, 52074 Aachen, Germany, ou_persistent22              
3Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany, ou_persistent22              
4Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2074315              
5Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany, ou_persistent22              
6Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
7Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 198504 Russian Federation, ou_persistent22              
8Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, ou_persistent22              
9Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Germany, ou_persistent22              
10Department of Technical Chemistry, Technical University Darmstadt, 64287 Darmstadt, Germany, ou_persistent22              

Content

show
hide
Free keywords: Catalysts; Electrocatalysis; Electrolytic reduction; Ionization of gases; Oxygen; Passivation; Precious metals; Thin films; Titanium carbide; Titanium oxides, Electrocatalytic reactions; Electroreduction of oxygens; High surface area; Material combination; Nanostructured thin film; Noble metal loading; Solid/liquid interfaces; Thin platinum films, Platinum alloys
 Abstract: The development of stable, cost-efficient and active materials is one of the main challenges in catalysis. The utilization of platinum in the electroreduction of oxygen is a salient example where the development of new material combinations has led to a drastic increase in specific activity compared to bare platinum. These material classes comprise nanostructured thin films, platinum alloys, shape-controlled nanostructures and core–shell architectures. Excessive platinum substitution, however, leads to structural and catalytic instabilities. Herein, we introduce a catalyst concept that comprises the use of an atomically thin platinum film deposited on a potential-triggered passivating support. The model catalyst exhibits an equal specific activity with higher atom utilization compared to bulk platinum. By using potential-triggered passivation of titanium carbide, irregularities in the Pt film heal out via the formation of insoluble oxide species at the solid/liquid interface. The adaptation of the described catalyst design to the nanoscale and to high-surface-area structures highlight the potential for stable, passivating catalyst systems for various electrocatalytic reactions such as the oxygen reduction reaction. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH Co. KGaA.

Details

show
hide
Language(s): eng - English
 Dates: 2020-03-122020-03
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/celc.202000278
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ChemElectroChem
  Abbreviation : ChemElectroChem
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim, Germany : WILEY-VCH Verlag GmbH & Co. KGaA
Pages: - Volume / Issue: 7 (11) Sequence Number: - Start / End Page: 2404 - 2409 Identifier: ISSN: 2196-0216
CoNE: https://pure.mpg.de/cone/journals/resource/2196-0216