Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Membrane-coated 3D architectures for bottom-up synthetic biology dagger

Eto, H., Franquelim, H. G., Heymann, M., & Schwille, P. (2021). Membrane-coated 3D architectures for bottom-up synthetic biology dagger. Soft Matter, 17, 5456-5466. doi:10.1039/d1sm00112d.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
d1sm00112d.pdf (Verlagsversion), 5MB
Name:
d1sm00112d.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
Open Access

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Eto, Hiromune1, Autor           
Franquelim, Henri G.1, Autor           
Heymann, Michael1, Autor           
Schwille, Petra1, Autor           
Affiliations:
1Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Chemistry; Materials Science; Physics; Polymer Science;
 Zusammenfassung: One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: We also thank the Biochemistry Core Facility of the Max Planck Institute of Biochemistry for assistance with protein purification, and the Imaging Core Facility of the same institution for assistance on the 4D image visualisation.
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000634847200001
DOI: 10.1039/d1sm00112d
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Soft Matter
  Kurztitel : Soft Matter
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, UK : Royal Society of Chemistry
Seiten: - Band / Heft: 17 Artikelnummer: - Start- / Endseite: 5456 - 5466 Identifikator: ISSN: 1744-683X
CoNE: https://pure.mpg.de/cone/journals/resource/1744-683X