Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays

Schmidt, H., Hahn, G., Deco, G., & Knösche, T. R. (2021). Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays. PLoS Computational Biology, 17(2): e1007858. doi:10.1371/journal.pcbi.1007858.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Schmidt_2021.pdf (Verlagsversion), 3MB
Name:
Schmidt_2021.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schmidt, Helmut1, Autor           
Hahn, Gerald2, Autor
Deco, Gustavo2, 3, 4, 5, Autor           
Knösche, Thomas R.1, 6, Autor                 
Affiliations:
1Methods and Development Group Brain Networks, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2205650              
2Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain, ou_persistent22              
3Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain, ou_persistent22              
4School of Psychological Sciences, Monash University, Melbourne, Australia, ou_persistent22              
5Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634551              
6Institute for Biomedical Engineering and Informatics, TU Ilmenau, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Axonal connections are widely regarded as faithful transmitters of neuronal signals with fixed delays. The reasoning behind this is that extracellular potentials caused by spikes travelling along axons are too small to have an effect on other axons. Here we devise a computational framework that allows us to study the effect of extracellular potentials generated by spike volleys in axonal fibre bundles on axonal transmission delays. We demonstrate that, although the extracellular potentials generated by single spikes are of the order of microvolts, the collective extracellular potential generated by spike volleys can reach several millivolts. As a consequence, the resulting depolarisation of the axonal membranes increases the velocity of spikes, and therefore reduces axonal delays between brain areas. Driving a neural mass model with such spike volleys, we further demonstrate that only ephaptic coupling can explain the reduction of stimulus latencies with increased stimulus intensities, as observed in many psychological experiments.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-04-022020-10-062021-02-08
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pcbi.1007858
Anderer: eCollection 2021
PMID: 33556058
PMC: PMC7895385
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : KN 588/7-1; DE 832/1-1
Förderprogramm : -
Förderorganisation : German Research Council (DFG)
Projektname : -
Grant ID : PID2019-105772GB-I00 AEI FEDER EU
Förderprogramm : -
Förderorganisation : Spanish Ministry of Science, Innovation and Universities (MCIU)
Projektname : -
Grant ID : 945539
Förderprogramm : Horizon 2020
Förderorganisation : European Union
Projektname : -
Grant ID : -
Förderprogramm : -
Förderorganisation : State Research Agency (AEI)
Projektname : -
Grant ID : -
Förderprogramm : -
Förderorganisation : European Regional Development Funds (FEDER)
Projektname : -
Grant ID : -
Förderprogramm : -
Förderorganisation : Catalan Agency for Management of University and Research Grants (AGAUR)

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 17 (2) Artikelnummer: e1007858 Start- / Endseite: - Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1