English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Combining Eliashberg theory with density functional theory for the accurate prediction of superconducting transition temperatures and gap functions

Sanna, A., Pellegrini, C., & Gross, E. K. U. (2020). Combining Eliashberg theory with density functional theory for the accurate prediction of superconducting transition temperatures and gap functions. Physical Review Letters, 125(5): 057001. doi:10.1103/PhysRevLett.125.057001.

Item is

Files

show Files
hide Files
:
PhysRevLett.125.057001.pdf (Publisher version), 407KB
Name:
PhysRevLett.125.057001.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
The author(s)

Locators

show
hide
Locator:
https://doi.org/10.1103/PhysRevLett.125.057001 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Sanna, A.1, Author           
Pellegrini, C.2, Author
Gross, E. K. U.2, Author
Affiliations:
1Max Planck Institute of Microstructure Physics, Max Planck Society, ou_2415691              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We propose a practical alternative to Eliashberg equations for the ab initio calculation of superconducting transition temperatures and gap functions. Within the recent density functional theory for superconductors, we develop an exchange-correlation functional that retains the accuracy of Migdal’s approximation to the many-body electron-phonon self-energy, while having a simple analytic form. Our functional is based on a parametrization of the Eliashberg self-energy for a superconductor with a single Einstein frequency, and enables density functional calculations of experimental excitation gaps. By merging electronic structure methods and Eliashberg theory, the present approach sets a new standard in quality and computational feasibility for the prediction of superconducting properties.

Details

show
hide
Language(s):
 Dates: 2020-07-272020-07-31
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: P13960
DOI: 10.1103/PhysRevLett.125.057001
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: - Volume / Issue: 125 (5) Sequence Number: 057001 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1