Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Non-filamentary non-volatile memory elements as synapses in neuromorphic systems

Fumarola, A., Leblebici, Y., Narayanan, P., Shelby, R., Sanchez, L., Burr, G., et al. (2019). Non-filamentary non-volatile memory elements as synapses in neuromorphic systems. In 19th Non-Volatile Memory Technology Symposium (NVMTS). IEEE. doi:10.1109/NVMTS47818.2019.8986194.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Non-filamentary_non-volatile_memory_elements_as_synapses_in_neuromorphic_systems.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
Non-filamentary_non-volatile_memory_elements_as_synapses_in_neuromorphic_systems.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1109/NVMTS47818.2019.8986194 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Fumarola, Alessandro1, Autor           
Leblebici, Y.2, Autor
Narayanan, P.2, Autor
Shelby, R.M.2, Autor
Sanchez, L.L.2, Autor
Burr, G.W.2, Autor
Moon, K.2, Autor
Jang, J.2, Autor
Hwang, H.2, Autor
Sidler, S.2, Autor
Affiliations:
1Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3287476              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing highly energy-efficient neuromorphic computing systems. For Deep Neural Networks (DNN), where information can be encoded as analog voltage and current levels, such arrays can represent matrices of synaptic weights, implementing the matrix-vector multiplication needed for algorithms such as backpropagation in a massively-parallel fashion. Previous research demonstrated a large-scale hardware-software implementation based on phase-change memories and analyzed the potential speed and power advantages over GPU-based training. In this proceeding we will discuss extensions of this work leveraging a different class of memory elements. Using the concept of jump-tables we simulate the impact of real conductance response of non-filamentary resistive devices based on Pr0.3Ca0.7MnO3 (PCMO). With the same approach as of [1], we simulate a three-layer neural network with training accuracy > 90% on the MNIST dataset. The higher ON/OFF conductance ratio of improved Al/Mo/PCMO devices together with new programming strategies can lead to further accuracy improvement. Finally, we show that the bidirectional programming of Al/Mo/PCMO can be used to implement high-density neuromorphic systems with a single conductance per synapse, at only a slight degradation to accuracy.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-02-102019
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: P13918
DOI: 10.1109/NVMTS47818.2019.8986194
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 19th Non-Volatile Memory Technology Symposium (NVMTS)
Veranstaltungsort: Durham, NC, USA
Start-/Enddatum: 2019-10-28 - 2019-10-30

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: 19th Non-Volatile Memory Technology Symposium (NVMTS)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: IEEE
Seiten: - Band / Heft: - Artikelnummer: 8986194 Start- / Endseite: - Identifikator: ISBN: 978-1-7281-4431-3
ISBN: 978-1-7281-4432-0