Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Restricted Boltzmann machines and matrix product states of one-dimensional translationally invariant stabilizer codes

Zheng, Y., He, H., Regnault, N., & Bernevig, B. A. (2019). Restricted Boltzmann machines and matrix product states of one-dimensional translationally invariant stabilizer codes. Physical Review B, 99(15): 155129. doi:10.1103/PhysRevB.99.155129.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
PhysRevB.99.155129.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
PhysRevB.99.155129.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

ausblenden:
externe Referenz:
https://doi.org/10.1103/PhysRevB.99.155129 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe
Beschreibung:
2024-10-18
OA-Status:
Grün

Urheber

ausblenden:
 Urheber:
Zheng, Yunqin1, Autor
He, Huan1, Autor
Regnault, Nicolas1, Autor
Bernevig, B. Andrei2, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Max Planck Institute of Microstructure Physics, Max Planck Society, Weinberg 2, 06120 Halle, DE, ou_2415691              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: We discuss the relations between restricted Boltzmann machine (RBM) states and the matrix product states (MPS) for the ground states of 1D translational invariant stabilizer codes. A generic translational invariant and finitely connected RBM state can be expressed as an MPS, and the matrices of the resulting MPS are of rank 1. We dub such an MPS as an RBM-MPS. This provides a necessary condition for exactly realizing a quantum state as an RBM state, if the quantum state can be written as an MPS. For generic 1D stabilizer codes having a nondegenerate ground state with periodic boundary condition, we obtain an expression for the lower bound of their MPS bond dimension, and an upper bound for the rank of their MPS matrices. In terms of RBM, we provide an algorithm to derive the RBM for the cocycle Hamiltonians whose MPS matrices are proved to be of rank 1. Moreover, the RBM-MPS produced by our algorithm has the minimal bond dimension. A family of examples is provided to explain the algorithm. We finally conjecture that these features hold true for all the 1D stabilizer codes having a nondegenerate ground state with periodic boundary condition, as long as their MPS matrices are of rank 1.

Details

ausblenden:
Sprache(n):
 Datum: 2019-04-152019-04-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: P13738
DOI: 10.1103/PhysRevB.99.155129
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 99 (15) Artikelnummer: 155129 Start- / Endseite: - Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008