English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Gating effects of conductive polymeric ionic liquids

Chen, S., Frenzel, F., Cui, B., Gao, F., Campanella, A., Funtan, A., et al. (2018). Gating effects of conductive polymeric ionic liquids. Journal of Materials Chemistry C, 6(30), 8242-8250. doi:10.1039/C8TC01936C.

Item is

Files

show Files
hide Files
:
c8tc01936c.pdf (Publisher version), 4MB
 
File Permalink:
-
Name:
c8tc01936c.pdf
Description:
Archivkopie
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1039/C8TC01936C (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Chen, Senbin1, Author
Frenzel, Falk1, Author
Cui, Bin2, Author
Gao, Fang2, Author           
Campanella, Antonella1, Author
Funtan, Alexander1, Author
Kremer, Friedrich1, Author
Parkin, Stuart S. P.2, Author                 
Binder, Wolfgang H1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society, Weinberg 2, 06120 Halle, DE, ou_3287476              

Content

show
hide
Free keywords: -
 Abstract: Poly(ionic liquid)s (POILs) belong to one of the most promising materials class in electrochemistry. In this study, we investigate POILs as a gating material within a field-effect transistor, additionally describing their glassy dynamics and charge transport properties. Four different imidazolium-based POILs have been investigated, ranging from homopolymers with varied counterions, i.e. POIL 1: P(APMIN(Tf)2) poly(1-[2-acryloylpropyl]-3-methylimidazolium bis(trifluoromethane)sulfonamide) and POIL 2: P(APMIPF6) poly(1-[2-acryloylpropyl]-3-methylimidazolium hexafluorophosphate, to semifluorinated random copolymers, i.e. POIL 3: P(APMIN(Tf)2-co-TFEA) (TFEA: 2,2,2-trifluoroethyl acrylate), and finally to semifluorinated triblock copolymers, POIL 4: P(APMIN(Tf)2-co-TFEA)-b-PPFS-b-P(APMIN(Tf)2-co-TFEA) (PPFS: polypentafluorostyrene). Their glassy dynamics and charge transport mechanism are investigated by broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC) and alternating current chip-calorimetry (ACC). The gating effects of these POILs are studied in detail, showing for the first time a reversible phase transition between thin films formed from the brownmillertite phase SrCoO2.5 and the perovskite phase SrCoO3 by use of such POILs, being especially pronounced for POIL 1: P(APMIN(Tf)2) homopolymer displaying gate voltages (VG) of 3–4 V and a gating time of ∼4 h. In the case of the POIL 3, P(APMIN(Tf)2-co-TFEA) as a random copolymer, higher VG (−8/+5 V) and a longer gating time (∼16 h) are revealed. Phase transition between SrCoO2.5 and SrCoO3 could not be observed from POILs 2 & 4 even using very large gate voltages (−10/+8 V) for a much longer time (48 h), indicating that primarily charge density and charge-carrier mobility are decisive in ionic liquid gating.

Details

show
hide
Language(s):
 Dates: 2018-07-162018-08-14
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: P13676
DOI: 10.1039/C8TC01936C
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Materials Chemistry C
  Other : Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  Abbreviation : J. Mater. Chem. C
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Royal Society of Chemistry
Pages: - Volume / Issue: 6 (30) Sequence Number: - Start / End Page: 8242 - 8250 Identifier: ISSN: 2050-7526
CoNE: https://pure.mpg.de/cone/journals/resource/2050-7526