Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Magnetic phase transitions induced by pressure and magnetic field: The case of antiferromagnetic USb2

Sandratskii, L. (2019). Magnetic phase transitions induced by pressure and magnetic field: The case of antiferromagnetic USb2. Physical Review B, 99(09): 094411. doi:10.1103/PhysRevB.99.094411.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
PhysRevB.99.094411.pdf (Verlagsversion), 537KB
 
Datei-Permalink:
-
Name:
PhysRevB.99.094411.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

ausblenden:
externe Referenz:
https://doi.org/10.1103/PhysRevB.99.094411 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Sandratskii, Leonid1, Autor
Affiliations:
1Max Planck Institute of Microstructure Physics, Max Planck Society, Weinberg 2, 06120 Halle, DE, ou_2415691              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Fascinating phenomena observed under applied pressure and magnetic field are attracting much research attention. Recent experiments have shown that application of the pressure or magnetic field to the USb2 compound induce the transformations of the ground-state antiferromagnetic (AFM) structure (+−−+) to, respectively, ferromagnetic (FM) or ferrimagnetic structures. Remarkably, the magnetic critical temperature of the FM state, induced by pressure, is more than two times smaller than the Néel temperature of the AFM ground state. We performed density-functional theory (DFT) and DFT+U studies to reveal the origin of the unusual magnetic ground state of the system and the driving mechanisms of the phase transitions. We investigate both the magnetic anisotropy properties and the parameters of the interatomic exchange interactions. To study pressure-induced effects we carry out calculations for reduced volume and demonstrate that the existence of the AFM-FM phase transformation depends on the peculiar features of the magnetic anisotropy. We discuss why the magnetic field that couples directly to the magnetic moments of atoms leads to the phase transition to the ferrimagnetic state whereas the pressure that does not couple directly to magnetic moments results in the FM structure. Our work demonstrates how the competition of different physical factors leads to variety of unusual properties of the antiferromagnetic USb2.

Details

ausblenden:
Sprache(n):
 Datum: 2019-03-112019-03-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: P13631
DOI: 10.1103/PhysRevB.99.094411
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 99 (09) Artikelnummer: 094411 Start- / Endseite: - Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008