Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF

Li, C., Requist, R., & Gross, E. K. U. (2018). Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF. The Journal of Chemical Physics, 148(8): 084110. doi:10.1063/1.5011663.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1.5011663.pdf (Verlagsversion), 327KB
 
Datei-Permalink:
-
Name:
1.5011663.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1063/1.5011663 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Chen1, Autor
Requist, Ryan1, Autor
Gross, E. K. U.1, Autor           
Affiliations:
1Max Planck Institute of Microstructure Physics, Max Planck Society, ou_2415691              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018-02-282018-02-28
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: P13219
DOI: 10.1063/1.5011663
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Kurztitel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 148 (8) Artikelnummer: 084110 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226