English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  True Nature of the Transition-Metal Carbide/Liquid Interface Determines Its Reactivity

Griesser, C., Li, H., Werning, E.-M., Winkler, D., Nia, N. S., Mairegger, T., et al. (2021). True Nature of the Transition-Metal Carbide/Liquid Interface Determines Its Reactivity. ACS Catalysis, 11(8), 4920-4928. doi:10.1021/acscatal.1c00415.

Item is

Files

show Files
hide Files
:
acscatal.1c00415.pdf (Publisher version), 4MB
Name:
acscatal.1c00415.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Griesser, Cristoph1, Author
Li, Haobo2, Author
Werning, Eva-Maria1, Author
Winkler, Daniel1, Author
Nia, Niusha Shakibi1, Author
Mairegger, Thomas1, Author
Götsch, Thomas1, 3, 4, Author           
Schachinger, Thomas5, Author
Steiger-Thirsfeld, Andreas5, Author
Penner, Simon1, Author
Wielend, Dominik6, Author
Egger, David2, 7, Author           
Scheurer, Christoph2, 7, Author           
Reuter, Karsten2, 7, Author           
Kunze-Liebhäuser, Julia1, Author
Affiliations:
1Department of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria, ou_persistent22              
2Chair of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85748 Garching, Germany, ou_persistent22              
3Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany;, ou_persistent22              
4Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, ou_24023              
5University Service Center for Transmission Electron Microscopy, TU Wien, , 1040 Vienna, Austria, ou_persistent22              
6Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, 4040 Linz, Austria;, ou_persistent22              
7Theory, Fritz Haber Institute, Max Planck Society, ou_634547              

Content

show
hide
Free keywords: -
 Abstract: Compound materials, such as transition-metal (TM) carbides, are anticipated to be effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) to useful chemicals. This expectation is nurtured by density functional theory (DFT) predictions of a break of key adsorption energy scaling relations that limit CO2RR at parent TMs. Here, we evaluate these prospects for hexagonal Mo2C in aqueous electrolytes in a multimethod experiment and theory approach. We find that surface oxide formation completely suppresses the CO2 activation. The oxides are stable down to potentials as low as −1.9 V versus the standard hydrogen electrode, and solely the hydrogen evolution reaction (HER) is found to be active. This generally points to the absolute imperative of recognizing the true interface establishing under operando conditions in computational screening of catalyst materials. When protected from ambient air and used in nonaqueous electrolyte, Mo2C indeed shows CO2RR activity.

Details

show
hide
Language(s): eng - English
 Dates: 2021-03-172021-01-282021-04-16
 Publication Status: Published online
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acscatal.1c00415
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Catalysis
  Abbreviation : ACS Catal.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : ACS
Pages: 9 Volume / Issue: 11 (8) Sequence Number: - Start / End Page: 4920 - 4928 Identifier: ISSN: 2155-5435
CoNE: https://pure.mpg.de/cone/journals/resource/2155-5435