English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Macromolecular and electrical coupling between inner hair cells in the rodent cochlea

Jean, P., Anttonen, T., Michanski, S., de Diego, A. M. G., Steyer, A. M., Neef, A., et al. (2020). Macromolecular and electrical coupling between inner hair cells in the rodent cochlea. Nature Communications, 11: 3208. doi:10.1038/s41467-020-17003-z.

Item is

Files

show Files
hide Files
:
3315847.pdf (Publisher version), 14MB
Name:
3315847.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Jean, P., Author
Anttonen, T., Author
Michanski, S., Author
de Diego, A. M. G., Author
Steyer, A. M., Author
Neef, A., Author
Oestreicher, D., Author
Kroll, J., Author
Nardis, C., Author
Pangršič, T., Author
Möbius, W., Author
Ashmore, J., Author
Wichmann, C., Author
Moser, T.1, Author           
Affiliations:
1Research Group of Synaptic Nanophysiology, MPI for Biophysical Chemistry, Max Planck Society, ou_2205655              

Content

show
hide
Free keywords: Cell biology; Neuroscience
 Abstract: Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in ‘mini-syncytia’. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.

Details

show
hide
Language(s): eng - English
 Dates: 2020-06-25
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41467-020-17003-z
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 11 Sequence Number: 3208 Start / End Page: - Identifier: -