English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ceramic boron carbonitrides for unlocking organic halides with visible light

Yuan, T., Zheng, M., Antonietti, M., & Wang, X. (2021). Ceramic boron carbonitrides for unlocking organic halides with visible light. Chemical Science, 12(18), 6323-6332. doi:10.1039/D1SC01028J.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 2MB
Name:
Article.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Yuan, Tao, Author
Zheng, Meifang, Author
Antonietti, Markus1, Author           
Wang, Xinchen, Author
Affiliations:
1Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Content

show
hide
Free keywords: -
 Abstract: Photochemistry provides a sustainable pathway for organic transformations by inducing radical intermediates from substrates through electron transfer process. However, progress is limited by heterogeneous photocatalysts that are required to be efficient, stable, and inexpensive for long-term operation with easy recyclability and product separation. Here, we report that boron carbonitride (BCN) ceramics are such a system and can reduce organic halides, including (het)aryl and alkyl halides, with visible light irradiation. Cross-coupling of halides to afford new C–H, C–C, and C–S bonds can proceed at ambient reaction conditions. Hydrogen, (het)aryl, and sulfonyl groups were introduced into the arenes and heteroarenes at the designed positions by means of mesolytic C–X (carbon–halogen) bond cleavage in the absence of any metal-based catalysts or ligands. BCN can be used not only for half reactions, like reduction reactions with a sacrificial agent, but also redox reactions through oxidative and reductive interfacial electron transfer. The BCN photocatalyst shows tolerance to different substituents and conserved activity after five recycles. The apparent metal-free system opens new opportunities for a wide range of organic catalysts using light energy and sustainable materials, which are metal-free, inexpensive and stable.

Details

show
hide
Language(s): eng - English
 Dates: 2021-03-232021
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1039/D1SC01028J
BibTex Citekey: D1SC01028J
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemical Science
  Other : Chem. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, UK : Royal Society of Chemistry
Pages: - Volume / Issue: 12 (18) Sequence Number: - Start / End Page: 6323 - 6332 Identifier: ISSN: 2041-6520