English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The mammalian rod synaptic ribbon is essential for Cav channel facilitation and ultrafast fusion of the readily releasable pool of vesicles

Grabner, C., & Moser, T. (2020). The mammalian rod synaptic ribbon is essential for Cav channel facilitation and ultrafast fusion of the readily releasable pool of vesicles. bioRxiv, 336503. doi:10.1101/2020.10.12.336503.

Item is

Files

show Files
hide Files
:
3316023.pdf (Preprint), 3MB
Name:
3316023.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Grabner, C.1, Author           
Moser, T.1, Author           
Affiliations:
1Research Group of Synaptic Nanophysiology, MPI for Biophysical Chemistry, Max Planck Society, ou_2205655              

Content

show
hide
Free keywords: -
 Abstract: Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal ‘no light detected’ they release glutamate continually to activate post-synaptic receptors, and when light is detected glutamate release pauses. How a rod’s individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild type and ribbonless (RIBEYE-ko) rods. Wild type rods created a readily releasable pool (RRP) of 92 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ < 0.4 msec. Lowering intracellular Ca2+-buffering accelerated Cav channel opening and facilitated release kinetics, but RRP size was unaltered. In contrast, ribbonless rods created an RRP of 24 SVs, and lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. The release deficits caused a sharp attenuation of rod-driven light responses measured from RIBEYE-ko mice. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.

Details

show
hide
Language(s): eng - English
 Dates: 2020-10-12
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Identifiers: DOI: 10.1101/2020.10.12.336503
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: bioRxiv
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 336503 Start / End Page: - Identifier: -