日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Shining Light on the Microscopic Resonant Mechanism Responsible for Cavity-Mediated Chemical Reactivity

Schäfer, C., Flick, J., Ronca, E., Narang, P., & Rubio, A. (2021). Shining Light on the Microscopic Resonant Mechanism Responsible for Cavity-Mediated Chemical Reactivity.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0008-6D97-4 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0008-6D98-3
資料種別: 成果報告書

ファイル

表示: ファイル
非表示: ファイル
:
2104.12429.pdf (プレプリント), 12MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0008-6D99-2
ファイル名:
2104.12429.pdf
説明:
Downloaded from arxiv.org: 2021-04-29
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
2021
著作権情報:
© the Author(s)

関連URL

表示:
非表示:
URL:
https://arxiv.org/abs/2104.12429 (プレプリント)
説明:
-
OA-Status:
Not specified

作成者

表示:
非表示:
 作成者:
Schäfer, C.1, 2, 3, 4, 5, 著者           
Flick, J.6, 7, 著者
Ronca, E.8, 著者
Narang, P.7, 著者
Rubio, A.1, 2, 3, 6, 著者           
所属:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
2Center for Free-Electron Laser Science, ou_persistent22              
3The Hamburg Center for Ultrafast Imaging, ou_persistent22              
4Department of Physics, Chalmers University of Technology, ou_persistent22              
5Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, ou_persistent22              
6Center for Computational Quantum Physics, Flatiron Institute, New York, ou_persistent22              
7John A. Paulson School of Engineering and Applied Sciences, Harvard University, ou_persistent22              
8Instituto per i Processi Chimico Fisici del CNR (IPCF-CNR), ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Strong light-matter interaction in cavity environments has emerged as a promising and general approach to control chemical reactions in a non-intrusive manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained thus far largely unclear, hampering progress in this frontier area of research. In this work, we leverage a combination of first-principles techniques, foremost quantum-electrodynamical density functional theory, applied to the recent experimental realization by Thomas et al. [1] to unveil the microscopic mechanism behind the experimentally observed reduced reaction-rate under resonant vibrational strong light-matter coupling. We find that the cavity mode functions as a mediator between different vibrational eigenmodes, transferring vibrational excitation and anharmonicity, correlating vibrations, and ultimately strengthening the chemical bond of interest. Importantly, the resonant feature observed in experiment, theoretically elusive so far, naturally arises in our investigations. Our theoretical predictions in polaritonic chemistry shine new light on cavity induced mechanisms, providing a crucial control strategy in state-of-the-art photocatalysis and energy conversion, pointing the way towards generalized quantum optical control of chemical systems.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2021-04-26
 出版の状態: オンラインで出版済み
 ページ: 11
 出版情報: -
 目次: -
 査読: 査読なし
 識別子(DOI, ISBNなど): arXiv: 2104.12429
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: