Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Shining Light on the Microscopic Resonant Mechanism Responsible for Cavity-Mediated Chemical Reactivity

Schäfer, C., Flick, J., Ronca, E., Narang, P., & Rubio, A. (2022). Shining Light on the Microscopic Resonant Mechanism Responsible for Cavity-Mediated Chemical Reactivity.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2104.12429.pdf (Preprint), 13MB
Name:
2104.12429.pdf
Beschreibung:
Downloaded from arxiv.org: 2022-02-23
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
© the Author(s)

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/2104.12429 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Schäfer, C.1, 2, 3, 4, 5, Autor           
Flick, J.6, 7, Autor
Ronca, E.8, Autor
Narang, P.7, Autor
Rubio, A.1, 2, 3, 6, Autor           
Affiliations:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
2Center for Free-Electron Laser Science, ou_persistent22              
3The Hamburg Center for Ultrafast Imaging, ou_persistent22              
4Department of Physics, Chalmers University of Technology, ou_persistent22              
5Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, ou_persistent22              
6Center for Computational Quantum Physics, Flatiron Institute, New York, ou_persistent22              
7John A. Paulson School of Engineering and Applied Sciences, Harvard University, ou_persistent22              
8Instituto per i Processi Chimico Fisici del CNR (IPCF-CNR), ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Strong light-matter interaction in cavity environments has emerged as a promising and general approach to control chemical reactions in a non-intrusive manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained thus far largely unclear, hampering progress in this frontier area of research. In this work, we leverage a combination of first-principles techniques, foremost quantum-electrodynamical density functional theory, applied to the recent experimental realization by Thomas et al. [1] to unveil the microscopic mechanism behind the experimentally observed reduced reaction-rate under resonant vibrational strong light-matter coupling. We find that the cavity mode functions as a mediator between different vibrational eigenmodes, transferring vibrational excitation and anharmonicity, correlating vibrations, and ultimately strengthening the chemical bond of interest. Importantly, the resonant feature observed in experiment, theoretically elusive so far, naturally arises in our investigations. Our theoretical predictions in polaritonic chemistry shine new light on cavity induced mechanisms, providing a crucial control strategy in state-of-the-art photocatalysis and energy conversion, pointing the way towards generalized quantum optical control of chemical systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-02-22
 Publikationsstatus: Online veröffentlicht
 Seiten: 17
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Keine Begutachtung
 Identifikatoren: arXiv: 2104.12429
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: