English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Rapid collagen-directed mineralization of calcium fluoride nanocrystals with periodically patterned nanostructures

Fang, W., Ping, H., Wagermaier, W., Jin, S., Amini, S., Fratzl, P., et al. (2021). Rapid collagen-directed mineralization of calcium fluoride nanocrystals with periodically patterned nanostructures. Nanoscale. doi:10.1039/D1NR00789K.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Fang, Weijian, Author
Ping, Hang, Author
Wagermaier, Wolfgang1, Author              
Jin, Shenbao, Author
Amini, Shahrouz2, Author              
Fratzl, Peter3, Author              
Sha, Gang, Author
Xia, Fanjie, Author
Wu, Jinsong, Author
Xie, Hao, Author
Zhai, Pengcheng, Author
Wang, Weimin, Author
Fu, Zhengyi, Author
Affiliations:
1Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              
2Shahrouz Amini, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3217681              
3Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Content

show
hide
Free keywords: -
 Abstract: Collagen fibrils present periodic structures, which provide space for intrafibrillar growth of oriented hydroxyapatite nanocrystals in bone and contribute to the good mechanical properties of bone. However, there are not many reports focused on bioprocess-inspired synthesis of non-native inorganic materials inside collagen fibrils and detailed forming processes of crystals inside collagen fibrils remain poorly understood. Herein, the rapid intrafibrillar mineralization of calcium fluoride nanocrystals with a periodically patterned nanostructure is demonstrated. The negatively charged calcium fluoride precursor phase infiltrates collagen fibrils through the gap zones creating an intricate periodic mineralization pattern. Later, the nanocrystals initially filling the gap zones only expand gradually into the remaining space within the collagen fibrils. Mineralized tendons with organized calcium fluoride nanocrystals acquire mechanical properties (indentation elastic modulus ~25.1 GPa and hardness ~1.5 GPa) comparable or even superior to those of native human dentin and lamellar bone. Understanding the mineral growth processes in collagen may facilitate the development of tissue engineering and repairing.

Details

show
hide
Language(s): eng - English
 Dates: 2021-03-23
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1039/D1NR00789K
BibTex Citekey: D1NR00789K
PMID: 0610
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nanoscale
  Abbreviation : Nanoscale
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, UK : Royal Society of Chemistry
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: 2040-3364