English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  De novo identification of universal cell mechanics gene signatures

Urbanska, M., Ge, Y., Winzi, M., Abuhattum Hofemeier, S., Ali, S. S., Herbig, M., et al. (in press). De novo identification of universal cell mechanics gene signatures. eLife, 12: RP87930.

Item is

Files

show Files
hide Files
:
eLife 2023 Urbanska.pdf (Preprint), 3MB
Name:
eLife 2023 Urbanska.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Urbanska, Marta1, 2, Author           
Ge, Yan2, Author
Winzi, Maria2, Author
Abuhattum Hofemeier, Shada1, 2, Author           
Ali, Syed Shafat3, Author
Herbig, Maik2, 4, Author           
Kräter, Martin1, 2, Author           
Toepfner, Nicole2, Author
Durgan, Joanna3, Author
Florey, Oliver3, Author
Dori, Martina2, Author
Calegari, Frederico2, Author
Lolo, Fidel-Nicolás3, Author
del Pozo, Miguel Ángel3, Author
Taubenberger, Anna V.2, Author
Cannistraci, Carlo Vittorio2, 3, Author
Guck, Jochen1, 2, 5, Author           
Affiliations:
1Guck Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164416              
2Technische Universität Dresden, ou_persistent22              
3external, ou_persistent22              
4Guests, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364696              
5Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164414              

Content

show
hide
Free keywords: -
 Abstract: Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy and specific to the mechanical phenotype, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way towards engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-05
 Publication Status: Accepted / In Press
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.7554/eLife.87930.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: eLife
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 12 Sequence Number: RP87930 Start / End Page: - Identifier: Other: URL
ISSN: 2050-084X
CoNE: https://pure.mpg.de/cone/journals/resource/2050-084X