Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  De novo identification of universal cell mechanics regulators

Urbanska, M., Ge, Y., Winzi, M., Abuhattum Hofemeier, S., Herbig, M., Kräter, M., et al. (2021). De novo identification of universal cell mechanics regulators. bioRxiv:10.1101/2021.04.26.441418.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
bioRxiv 2021 Urbanska.pdf (Preprint), 2MB
Name:
bioRxiv 2021 Urbanska.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Urbanska, Marta1, 2, Autor           
Ge, Yan2, Autor
Winzi, Maria2, Autor
Abuhattum Hofemeier, Shada1, 2, Autor           
Herbig, Maik2, 3, Autor           
Kräter, Martin1, 2, Autor           
Toepfner, Nicole2, Autor
Durgan, Joanna4, Autor
Florey, Oliver4, Autor
Dori, Martina2, Autor
Calegari, Frederico2, Autor
Lolo, Fidel-Nicolás4, Autor
del Pozo, Miguel Ángel4, Autor
Taubenberger, Anna V.2, Autor
Cannistraci, Carlo Vittorio2, 4, Autor
Guck, Jochen1, 2, 5, Autor           
Affiliations:
1Guck Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164416              
2Technische Universität Dresden, ou_persistent22              
3Guests, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364696              
4external, ou_persistent22              
5Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164414              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Mechanical proprieties determine many cellular functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors governing cell mechanical phenotype is therefore a subject of great interest. Here we present a mechanomics approach for establishing links between mechanical phenotype changes and the genes involved in driving them. We employ a machine learning-based discriminative network analysis method termed PC-corr to associate cell mechanical states, measured by real-time deformability cytometry (RT-DC), with large-scale transcriptome datasets ranging from stem cell development to cancer progression, and originating from different murine and human tissues. By intersecting the discriminative networks inferred from two selected datasets, we identify a conserved module of five genes with putative roles in the regulation of cell mechanics. We validate the power of the individual genes to discriminate between soft and stiff cell states in silico, and demonstrate experimentally that the top scoring gene, CAV1, changes the mechanical phenotype of cells when silenced or overexpressed. The data-driven approach presented here has the power of de novo identification of genes involved in cell mechanics regulation and paves the way towards engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-04-27
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 10.1101/2021.04.26.441418
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: bioRxiv:10.1101/2021.04.26.441418
Genre der Quelle: Kommentar
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -