English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Surface oxygen Vacancies on Reduced Co3O4(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation

Liu, Y., Peng, Y., Naschitzki, M., Gewinner, S., Schöllkopf, W., Kuhlenbeck, H., et al. (2021). Surface oxygen Vacancies on Reduced Co3O4(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation. Angewandte Chemie International Edition, 60(30), 16514-16520. doi:10.1002/anie.202103359.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
anie.202103359.pdf (Publisher version), 2MB
Name:
anie.202103359.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Liu, Yun1, Author              
Peng, Yuman2, Author
Naschitzki, Matthias1, Author              
Gewinner, Sandy3, Author              
Schöllkopf, Wieland3, Author              
Kuhlenbeck, Helmut1, Author              
Pentcheva, Rossitza2, Author
Roldan Cuenya, Beatriz1, Author              
Affiliations:
1Interface Science, Fritz Haber Institute, Max Planck Society, ou_2461712              
2Department of Physics and Center for Nanointegration (CENIDE), Universitt Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany), ou_persistent22              
3Molecular Physics, Fritz Haber Institute, Max Planck Society, ou_634545              

Content

show
hide
Free keywords: -
 Abstract: The activation of molecular oxygen is a fundamental step in almost all catalytic oxidation reactions.We have studied this topic and the role of surface vacancies for Co3O4(100) films with a synergistic combination of experimental and theoretical methods. We show that the as-prepared surface is Blayer terminated and that mild reduction produces oxygen single and double vacancies in this layer. Oxygen adsorption experiments clearly reveal different superoxide species below room temperature. The superoxide desorbs below ca. 120 K from a vacancy-free surface and is not active for CO oxidation while superoxide on a surface with oxygen vacancies is stable up to ca. 270 K and can oxidize CO already at the low temperature of 120 K. The vacancies are not refilled by oxygen from the superoxide, which makes them suitable for long-term operation. Our joint experimental/theoretical effort highlights the relevance of surface vacancies in catalytic oxidation reactions.

Details

show
hide
Language(s): eng - English
 Dates: 2021-04-262021-03-082021-05-172021-05-172021-07-19
 Publication Status: Published in print
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/anie.202103359
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Angewandte Chemie International Edition
  Abbreviation : Angew. Chem. Int. Ed.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: 7 Volume / Issue: 60 (30) Sequence Number: - Start / End Page: 16514 - 16520 Identifier: ISSN: 1433-7851
CoNE: https://pure.mpg.de/cone/journals/resource/1433-7851